UNIVERSITY OF TWENTE.

QuestionMark

Designing a benchmark for probabilistic databases

Nikki Zandbergen

Why probabilistic databases?

- Car and cargo company Car&Co
- Lousy data management
- Wants partnerships with top customers
 - > 200 sales per month

•SELECT brand FROM cars WHERE sales > 200;

Let's use a probabilistic DBMS!

MCDB Trio PossDB

We need a benchmark!

We need a benchmark!

But there is no good one...

Research Questions

- How can a benchmark be designed to test and compare probabilistic database management systems on real-world strain?
- How do the novel probabilistic database DuBio and the state-ofthe-art MayBMS perform when benchmarking these technologies with the developed benchmark?

Benchmarking

- Standardised manner to test systems
- Effectiveness. Efficiency. Appeal.
- Dataset and queries.

Probabilistic Databases

- Models a set of possible databases
- Annotated with confidence score
- Possible Worlds
- Probabilistic Database

$$\langle R_1^i, \dots, R_k^i, p^{[i]} \rangle \in W$$

$$\begin{split} W &= \{ \langle R_1^1, \dots, R_k^1, p^{[1]} \rangle, \dots, \langle R_1^n, \dots, R_k^n, p^{[n]} \rangle \} \\ where \sum_{1 \leq i \leq n} p^{[i]} &= 1. \end{split}$$

DuBio

offers

id	name	sales	_sentence
1	BMW	150	Bdd(a1=1, w1)
2	B.M.W.	127	Bdd(a1=2, w1, a2=1, w2)
3	Audi	194	Bdd(a2=2, w2)

_dict

name	dict
mydict	a1=1:0.3, a1=2:0.7, a2=1:0.4, a2=2:0.6, w1:0.5, w2:0.5

DuBio

offers

 id	namo		contonco
1	BMW	150	Bdd(a1=1, w1)
2	B.M.W.	127	Bdd(a1=2, w1, a2=1, w2)
3	Audi	194	Bdd(a2=2, W2)

dict

name	dict
mydict	a1=1:0.3, a1=2:0.7, a2=1:0.4, a2=2:0.6, w1:0.5, w2:0.5

DuBio

offers

id	name	sales	_sentence
1	BMW	150	Bdd(a1-1, w1)
2	B.M.W.	127	Bdd(a1=2, w1, a2=1, w2)
3	Audi	194	Bdd(a2=2, w2)

_dict

name	dict
mydict	a1=1:0.3, a1=2:0.7, a2=1:0.4, a2=2:0.6, w1:0.5, w2:0.5

MayBMS offers

id	name	sales	v0	d0	p0	v1	d1	p1
1	BMW	150	1	1	0.3	1	1	0.5
2	B.M.W.	127	1	2	0.7	1	1	0.5
2	B.M.W.	127	2	1	0.4	2	1	0.5
3	Audi	194	2	2	0.6	2	1	0.5

MayBMS offers

Ы	ama	دعامد	νΛ	4 0	nN	v/1	41	n1
1	BMW	150	1	1	0.3	1	1	0.5
2	B.M.W.	127	1	2	0.7	1	1	0.5
Ź	B.W.W.	127	2		0.4	Ζ	Î	0.5
3	Audi	194	2	2	0.6	2	1	0.5

MayBMS offers

id	name	sales	v0	d0	p0	v1	d1	p1
1	BMW	150	1	1	0.3	1	1	0.5
2	R M M	107	1	2	∩ 7	1	1	05
2	B.M.W.	127	2	1	0.4	2		0.5
3	Audi	194	2	2	0.6	2	1	0.5

QuestionMark

- User Manual
- The Dataset Generator
- The Probabilistic Benchmark

The Dataset Generator

n Times

Write Results

Digesting the Results

• Three aspects • Five metrics Read the Manual Run QuestionMark: The Dataset Generator Run QuestionMark: The Probabilistic Benchmark Digest Digest Results Results

- Effectiveness
- Efficiency
- Appeal

Digesting the Results

- Query Functionality Coverage
- Brevity of the Query Dialect
- Runtime of Queries
- Probabilistic Data Overhead
- User Friendliness

Putting QuestionMark to the test

- DuBio
- MayBMS

1 – Query Functionality Coverage

150 + 127 + 194 = 471

150 · 0.3 + 127 · 0.5 + 194 · 0.2 = 147.3

Get the expected count

1 – Query Functionality Coverage

#	Native	Possible	#	Native	Possible	Functionality
1	[]	[]	1	[X]	[]	Support of most recent deterministic DBMS
2	[]	[]	2	[X]	[]	queries Offering a compact representation of the present uncertainty
3	[X]	[]	3	[X]	[[]	Get the probability of an offer
4	[X]	ĺĺ	4	[x]	ĺĺĺ	Get the probability of a composed result
5	[X]	[]	5	[X]	[]	Apply aggregate functions on probabilities
6	[X]		6	[X]	<u> </u>	Filtering on probability
7	[X]	[]	7	[]	[X]	Get the expected count
8	$\begin{bmatrix} X \end{bmatrix}$		8			Get the expected sum
9	[]	[X]	9	[]	[X]	Get the most probable answer
10	[]	[X]	10	[X]	[]	Verify if a specific possible world exists
11	[]	[X]	11	[X]	[]	Verify if a record is certain
12	[]	[]	12	[]	[X]	Updating the uncertainty of an offer
13	[]	[]	13	[X]	[]	Repair the probability space after addition, update
14	May	BMS	14	Du	Bio	or deletion of offers Any anomalies discovered during benchmarking OF TWENTE.

2 – Brevity of the Query Dialect

DuBio

2 – Brevity of the Query Dialect

DuBio

SELECT round((AVG(probability) * 100)::decimal, 4) AS certainty_of_the_dataset
FROM (
 SELECT round(prob(d.dict, o._sentence)::NUMERIC, 4) AS probability
 FROM offers o, _dict d
 WHERE d.name = 'mydict'
) AS probabilities;

SELECT round((AVG(tconf()) * 100)::NUMERIC, 4) AS certainty_of_the_dataset
FROM offers;

3 – Runtime of Queries

MayBMS

UNIVERSITY OF TWENTE.

DuBio

4 – Probabilistic Data Overhead

id	name	sales	_sentence
1	BMW	150	Bdd(a1=1, w1)
2	B.M.W.	127	Bdd(a1=2, w1, a2=1, w2)
3	Audi	194	Bdd(a2=2, w2)

_dict

name	dict
mydict	a1=1:0.3, a1=2:0.7, a2=1:0.4, a2=2:0.6, w1:0.5, w2:0.5

4 – Probabilistic Data Overhead

id	name	sales	v0	d0	p0	v1	d1	p1
1	BMW	150	1	1	0.3	1	1	0.5
2	B.M.W.	127	1	2	0.7	1	1	0.5
2	B.M.W.	127	2	1	0.4	2	1	0.5
3	Audi	194	2	2	0.6	2	1	0.5

5 – User Friendliness

[1, 2, 3 , 4, 5] [1, 2 , 3, 4, 5] [1, 2, 3, 4 , 5]	[1, 2, 3, 4, 5] [1, 2, 3, 4, 5] [1, 2, 3, 4, 5]
[1, 2, 3, 4, 5]	[1, 2, 3, 4, 5]
[1 , 2, 3, 4, 5]	[1 , 2, 3, 4, 5]
MavBMS	DuBio

The software is well documented. The software was easy to work with. We have sufficient in-house expertise to work well with the software. I am satisfied with the monetary expenses that need to be made for running the software. The software has a support service.

Conclusion

- Limitations identified
- Fulfils purpose

QuestionMark is ready to guide the future of databases!

Thank you! Questions.

Thank you! Tea and cake time :D

Appendix: Dataset Selection

- The dataset is a good representation of the real world, both in the type of data and in size.
- The dataset contains enough uncertainty to be suitable for data integration purposes.
- The dataset should be freely available.
- The dataset should be versioned. Experiments conducted on the dataset should be reproducible.
- The dataset is suitable to be inserted in a relational database management system.

Appendix: The WDC Dataset

- Web Data Commons Product Data Corpus and Gold Standard for Large-Scale Product Matching (LSPM) version 2.0
- English subset
- 43 thousand websites
- 16 million product offers
- 10 million clusters
- Cluster sizes from 1 to 80 offers per cluster
- id, cluster_id, title, brand, category, description, price, identifiers, +2
- 2.8 GB compressed

Appendix: Product Matching

- Data Preparation
- Search Space Reduction using a Rule-Based blocking algorithm
 - Incrementally-Adaptive Sorted Neighborhood Blocking
 - Improved Suffix Array Blocking
- Attribute Value Matching using a matching algorithm
 - Attribute-Based Entity Resolution
- Classification
 - Probabilistic clustering
 - Removing Inconsistent world graphs.
- Verification

Appendix: The Dataset Generator

- 16 Python files
- 2013 lines of code

Appendix: The Probabilistic Benchmark

- 11 Python files
- 822 lines of code

