
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

- Research Topics -
Designing a benchmark

for probabilistic databases

Nikki Zandbergen
M.Sc. Thesis
August 2022

Supervisor:
dr. ir. M. van Keulen

Advisor:
ing. J. Flokstra

Data Management & Biometrics
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands



Designing a benchmark for probabilistic databases
Nikki Zandbergen
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

n.zandbergen@student.utwente.nl

ABSTRACT
As increasing volumes of uncertain data are produced ev-
ery day, the need for a mature probabilistic database man-
agement system grows. Various probabilistic database sys-
tems have been developed throughout the years, but none
robust enough to function in a real-world environment.
This research will contribute to the development of novel
probabilistic databases by developing a benchmark specif-
ically designed for real-world strain testing of probabilis-
tic databases. This benchmark will be used to evaluate
the performance and functionality of the state-of-the-art
probabilistic database MayBMS and the novel probabilis-
tic database DuBio. With these results, it can be eval-
uated what research still needs to be conducted before
probabilistic databases can expect real-world use.

Keywords
Benchmark, Probabilistic Database, DuBio, MayBMS,
Deduplication, Product Matching, Entity Resolution.

1. INTRODUCTION
Although the field of probabilistic databases has been stud-
ied for over two decades, a breakthrough in its use outside
the academic world has yet to happen. While a large part
of the data produced today is incomplete or uncertain, it
is often still treated in a deterministic manner.

Having uncertain data treated in a deterministic manner
ignores the many opportunities that treating that data
in an indeterministic manner offers, and it might even
lead to incorrect decisions due to incorrect data display-
ing [15]. Probabilistic data processing can aid decisions
in more scientific areas, such as bio-informatics [61] and
healthcare [41], but also adds value in various business
processes, which rely on decisions based on data from dif-
ferent sources. To get this data ready for decision making,
data cleaning is performed to remove inconsistencies in
the data. This process consumes significant time, while
the risk of making wrong decisions due to badly cleaned
data is still present. Probabilistic data querying solves this
issue. Being able to query raw business data in a prob-
abilistic manner provides an improved information repre-
sentation to base business intelligence decisions on [15]. It
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is thus not the case that the availability of good quality
probabilistic databases only aids the scientific world; on
the contrary. A wide range of sectors could benefit from
the use of probabilistic DataBase Management Systems
(DBMS).

To enable this step towards real-world usability, a stan-
dardised manner of verifying the performance and func-
tionality of probabilistic databases should be established.
Benchmarking can deliver this [35]. Considering proba-
bilistic databases, a benchmark should provide a dataset
and a set of queries to test the systems. Benchmarking
also provides a fair comparison of two different systems.
While many benchmarks are available for deterministic
databases, such as TPC and SPEC [35], there is no cur-
rent standard for probabilistic databases. Being able to
benchmark probabilistic databases can play a crucial role
in establishing widespread use of probabilistic databases
in the real world.

As data is often treated as if it were certain, it might not
even be obvious to those who manage the data that what
they process is actually uncertain. Uncertain or incom-
plete data is common in real-world scenarios and can be
retrieved from many areas. These include sensor data [3,
11, 26, 33, 48], scientific data collection [5, 31, 45, 64],
data integration (data deduplication) [10, 17, 56, 32, 40,
45, 49], user profiling [64], medical data [8, 31, 38] and
human-entered data [5]. Data can become uncertain due
to measurement errors, noise, incompleteness, or inconsis-
tencies [3], though it could also be that the data is deter-
ministic, but our understanding of that data is uncertain
[17]. Being able to express and query this uncertainty in
a non-deterministic manner is important for a thorough
understanding of the data and to enable well-established
decisions based on that data [45].

Traditional databases are designed to store exact data and
are limited in their ways to handle uncertain data. This
makes it difficult or sometimes impossible to work with un-
certainty in data, causing many application opportunities
to remain untouched [26, 48]. To unlock these opportuni-
ties, probabilistic databases have been developed. Proba-
bilistic databases can omit the cost of enforcing certainty
in data and can enable applications that were otherwise
unexplored [17]. Unfortunately, no probabilistic database
management system to date performs well enough to be
used in various real-world scenarios [60].

To add to the research on probabilistic databases and to
join the movement towards real-world usability, a bench-
mark will be designed. The goal of this benchmark is to
deliver a standard for testing probabilistic database sys-
tems for real-world usability. When this benchmark is de-
signed, the novel probabilistic database DuBio [57] and the
state-of-the-art probabilistic database MayBMS [7] will be
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tested. The benchmark will also be run with the determin-
istic DBMS PostgreSQL [52] to provide a baseline perfor-
mance.

During this research there will be a special interest in prod-
uct matching. Product matching is a form of entity reso-
lution [32], which refers to the process of identifying which
data entities from multiple sources refer to the same real-
world entity [42, 66]. Entity resolution aids the goal of
data integration, which should lead to an increased data
quality and size usable for further analysis [66].

The task of product matching is not trivial. When com-
bining product data from more than one source, chances
are that two or more sources disagree in the value of an
attribute of a single product [42]. In that case, it should
be determined what source contains the correct attribute
value, which is impossible to do both reliably and efficient.
Another issue is determining what products are the same
in the first place, as conflicting attributes in product offers
make the same products appear different. To solve issues
like these, probabilistic data integration can be used. With
probabilistic data integration, products from disagreeing
sources can still be used. Their product information will
then be displayed with an uncertainty about the possible
values.

Although the product matching case will be used to eval-
uate the performance and showcase the possibilities of a
probabilistic DBMS, the use of this research is not lim-
ited to product matching. Various business processes rely
on the integration of two or more systems with overlap-
ping information. Having a system that can translate this
uncertainty and show it to the user of the system can en-
hance business intelligence decisions and tackle the issues
discussed earlier.

The rest of this paper is structured as follows. In Section
2 an overview will be given on previous work on proba-
bilistic databases and benchmarking. Section 3 introduces
the systems that will be used for this research. Section 4
discusses the benchmark dataset for running experiments
with the selected technologies. In Section 5 the purpose
and goals of this research are listed, and in section 6 the
proposed methodology for this research is discussed. Sec-
tion 7 provides the initial results of this research and shows
that the proposed research is feasible. In Section 8 the
work programme for the final research is listed and a plan-
ning is provided.

2. BACKGROUND
In this section, the definition of a probabilistic database
will be given and a background on probabilistic databases
will be provided. Additionally, previous work on bench-
marking technologies for databases will be discussed and
the shortcomings of those will be evaluated.

2.1 Probabilistic databases
Although probabilistic databases could be seen as an ex-
tension to traditional deterministic databases, the data
they process is vastly different. Where databases were
traditionally designed to only include deterministic data,
data generated nowadays is increasingly more uncertain.
Because of this, probabilistic databases were developed.

In general, a probabilistic database models a set of possi-
ble databases, as opposed to a single one in a traditional
database [10]. Probabilistic databases are systems that
store uncertain data and support complex queries that

translate this uncertainty to the user [16]. In probabilistic
databases, uncertain data is annotated with a confidence
score. This confidence score is interpreted as a probability
and thus mathematical computations can be performed on
them [16]. By having these uncertain attributes, different
possible databases can be constructed. The set of possible
databases is also referred to as the set of possible worlds,
where each database instance is a representation of a pos-
sible world. When additional evidence is provided to the
dataset, it could be that certain possible worlds are not
true anymore. These worlds are then removed from the
set of possible worlds and the probabilities of the remain-
ing worlds are normalised [29].

Theoretically, when a set of possible worlds would be
queried, the query answer would be the average of the
result that the query would return in each possible world
separately [62]. In reality, implementations of probabilis-
tic databases are more complex. If all possible worlds were
to be modeled and an exact probability calculation over
all of those would be performed, execution time would be
exponential [49].

Although the exact implementation of different probabilis-
tic databases vary, they are all developed to serve the same
goal. Earlier research has identified various properties that
a probabilistic DBMS should possess. These properties
include scalability, expressiveness, succinctness, efficiency,
genericity and convenience [4, 31, 62].

Within this research, the following definitions are used re-
garding probabilistic databases:

• Possible world: A possible world is an element from a
set of possible worlds, where p[i] is its probability and
Rk denotes the amount of relations in that possible
world [28].

⟨Ri
1, . . . , R

i
k, p

[i]⟩ ∈ W

• Probabilistic database: A probabilistic database is a
finite set of structures, where each set of relations
within the structure has a valid probability [28].

W = {⟨R1
1, . . . , R

1
k, p

[1]⟩, . . . , ⟨Rn
1 , . . . , R

n
k , p

[n]⟩}

where
∑

1≤i≤n

p[i] = 1.

• Descriptive sentence: A descriptive sentence de-
scribes a subset of possible worlds using the nota-
tion of set theory [58]. This research uses the term
sentence for conciseness.

The idea of having uncertain databases has been researched
for long. First researches on uncertain databases date
back to the early 1980’s [21, 24], where the focus lay on
managing databases containing null-values and large de-
pendencies, and providing a mathematical foundation for
these theories. In 1997, the first prototype of an uncer-
tain database system was released, called ProbView [33].
Today, the focus has shifted towards practical implemen-
tations of databases that can manage uncertain and in-
complete data conveniently.

It was found early that probabilities are a very powerful,
yet complex tool for managing uncertainty [33]. Although
earlier research identified several ways in which uncertain
data could be modelled [17], the focus of the research com-
munity eventually shifted to a probabilistic approach for
the implementation of uncertain databases. Hence why
they are called probabilistic databases in this research.
Different probabilistic databases have been developed, at-
tempting to provide a system that can be used in the real
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world, but with no success. Even to date, no probabilistic
database system is able to provide near-exact probability
calculations on larger amounts of data [49, 61].

Over the years, some of the more promising probabilis-
tic databases developed are MayBMS [5], MCDB (Monte
Carlo Database) [25], and Trio [64]. Although these all
serve the same goal, the internal functioning of each of
these systems differ. On a high level, MayBMS and Trio
provide probabilities based on tuple-level uncertainty, while
MCDB calculates these based on attribute-level uncer-
tainty [55]. The expressive power of these uncertainty
models also differ. When assigning probabilities to tuples,
these probabilities are independent of each other, as with
Trio. MayBMS solved this independency issue by provid-
ing world set descriptors, which describe this uncertainty
relation [36].

Recently, a new type of probabilistic database has emerged:
open world probabilistic databases. In normal probabilis-
tic databases, it is assumed that the true world exists
among one of the possible worlds. In an open world, the
possibility is added that the true state could be one not
present among the known possible worlds [13, 14]. As the
challenges of managing open world probabilistic databases
have not yet been solved, focus in this research is merely
on closed world probabilistic databases.

2.2 Benchmarking
In order to properly and fairly test a new piece of soft-
ware, benchmark testing can be used. A benchmark pro-
vides a standardised manner to test the performance and
functionality of a specific type of software. For a bench-
mark to be fair, it should work indiscriminately [28]. This
implies that the benchmark itself may not favour one tech-
nology over the other and should focus on the environment
instead of the system.

From the Oxford English Dictionary, to benchmark has
the following definition:

• Benchmark: To evaluate or check (something) by
comparison with an established standard; to mea-
sure against a comparable or equivalent point of ref-
erence, esp. in order to assess performance or set
performance standards [39].

Having a benchmark for testing technologies helps both
the developers and the consumers of a technology [35].
For developers, the results of a benchmark test can be used
to check for areas where the technology can be improved
and to show the strengths of the technology to stakehold-
ers and potential customers. For consumers, it provides a
standardised way to compare various technologies. Bench-
marking additionally provides convenience in testing tech-
nologies. Without benchmarking, a technical specialist
should be hired to test a system thoroughly, which would
cost a business many resources in terms of time and money
[38].

Designing a proper benchmark is no trivial task. A bench-
mark for database technologies consists of both a dataset
and a set of queries. Both the dataset and queries need to
be representative of the real-world use that the technology
will encounter. When these are both established, the de-
sign of testing should be considered. An important aspect
is repeating the tests to obtain a more reliable performance
estimation. More iterations lead to more reliable results,
but often five to ten iterations is performed [20]. One way
to design a benchmark is by following design science.

Numerous benchmark tools are already available for test-
ing deterministic database management systems. These
include Apache JMeter, BAPco, SPEC, TPC and Wiscon-
sin [20, 35], of which TPC is the most well-known. The
deterministic relational DBMS PostgreSQL also provides
its own benchmark with its software. With this, users of
the system can perform their own benchmark tests [53].

For probabilistic databases, no standard benchmark tools
are available yet [54]. Lately, more research is being con-
ducted to provide this. LUBM is a benchmark that can
be used and scaled to handle an arbitrary number of
probabilistic statements in the context of SparQL [47].
MayBMS created an adaptation of the TPC-H bench-
mark to test their system, called Probabilistic TPC-H [31].
Other researches also designed their own benchmark to
test MayBMS, such as [12] and [54]. However, none have
reached a widespread use within the research community.

One of the reasons these benchmarking technologies do
not suffice to be used in the real world, is that they do not
make use of a real-world undeterministic dataset. Prob-
abilistic TPC-H and the two MayBMS benchmarks make
use of synthetic data and synthetic uncertainty. Other
benchmarking technologies focus more on uncertainty in
other types of uncertain data, such as Linked Open Data
with LUBM.

Currently, there is thus no benchmark tool that can be
used as a standard for testing probabilistic database man-
agement systems. There is a need to bring the real-world
application of these technologies towards a novel bench-
mark.

3. TECHNOLOGIES
For this research, three relational database management
systems will be used and put to the test with the designed
benchmark. In this section, each of these systems will be
introduced, and their identified strengths and weaknesses
from earlier research will be discussed.

3.1 PostgreSQL
PostgreSQL [52] is an open source relational database man-
agement system. Its design was first presented by the
University of California in 1986 and was originally called
POSTGRES [51]. Now, PostgreSQL is developed and
maintained by the PostgreSQL Global Development Group
and has grown to the fourth most used relational database
management system worldwide [50].

PostgreSQL has earned strong reputation by providing a
rich relational database management system, able to run
on all major operating systems, while being free and open
source. It offers a reliable high-performance system and
is fully ACID-compliant [52]. Additionally, PostgreSQL is
fit as a solid foundation for any extension project. Since
it is built with extendibility in mind, features such as cus-
tom data types and functions can easily be added. It also
makes use of the liberty license, meaning that its source
code can be freely adapted and distributed for any pur-
pose [53]. Hence why many projects, including MayBMS
and DuBio, run on top of PostgreSQL.

3.2 MayBMS
MayBMS [7] is one of the first relational database man-
agement systems able to manage uncertain and incomplete
data. MayBMS was first introduced in 2006 and promises
a space and time efficient query execution with scalable
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evaluation [5]. Their aim is to have a robust database sys-
tem that could be used in real applications [28]. MayBMS
is developed on top of PostgreSQL in a way to ensure
a fully integrated system [5, 28]. The current version of
MayBMS requires to be run with PostgreSQL 8.3.3, re-
leased in 2008, and offers all functionality present in that
version [31].

The internal functioning of MayBMS is based on possible
worlds theory [5] and uses U-relational databases [4]. U-
relations focus on record-level uncertainty. For this, three
additional columns are added to a record per uncertainty:
one displaying the random variable, one for its value, and
the third containing the probability [28]. Because of this
design, MayBMS supports complex dependencies [36].

Regarding the query design, MayBMS uses an SQL-like
language to query the probabilistic data. It hides the
complexity for the user and rewrites and optimises the
queries once submitted. The query language is an exten-
sion on the SQL syntax, with a few adjustments. MayBMS
dropped the support for standard SQL aggregates and in-
troduced new probabilistic aggregates and constructs for
dealing with incompleteness and probabilities. [6].

Experiments conducted by the developers of MayBMS
showed that the system can fulfil the expectations of being
a usable probabilistic DMBS. These experiments showed a
runtime execution close to that of conventional query eval-
uation [5] and suggest that MayBMS will perform well in
real-world scenarios [8, 31].

Various researches investigating the usefulness and oppor-
tunities of probabilistic databases have used MayBMS as
a prototype. [3] and [38] used MayBMS for the purpose of
detecting faulty sensors and modelling patient counts re-
spectively. Both researches found MayBMS to be of great
use. Also [61] reported MayBMS to function well for the
given bio-informatics task.

Although MayBMS was very competitive for its time, it
also contains properties that make its use less practical
for real-world applications. The following issues were re-
ported in earlier research on MayBMS:

1. There is a limit to the amount of random variable
assignments MayBMS supports due to the design de-
cision of adding three new columns per random vari-
able [49, 61]. This issue is due to a restriction from
PostgreSQL on the maximum amount of columns per
table [52], which will be reached when constructing
large and complex sentences. A maximum of five
hundred random variable assignments can be sup-
ported per record [61].

2. MayBMS cannot handle OR-relations in sentences
[5]. When having to digest an OR-relation, it will
be translated to an AND-relation with negations.
This complicates the formulated sentences, requir-
ing more columns to store these sentences.

3. A query run with aconf() will always return an ap-
proximation of the probabilities, even if returning
an exact probability is possible or even more time-
efficient [49].

4. The performance of MayBMS is not always stable.
[12] noted that MayBMS reported errors and mem-
ory issues on certain runs on random data, especially
when data sets grew over 1 million records. [49] re-
ported a rapid growth of runtime when facing larger
datasets.

5. For the purpose of the research of [49], MayBMS
did not work out-of-the-box and had to be tweaked
to support relations of arbitrary arity and provide a
fair timing.

3.3 DuBio
DuBio [57] is a novel probabilistic database developed by
the University of Twente. Although not yet officially intro-
duced, its source code can already be downloaded to test
the system and run experiments. The aim of DuBio is to
provide real-world scalability of probabilistic data process-
ing on complex queries. DuBio is built as an extension of
PostgreSQL [15], making it less dependable on a specific
PostgreSQL version and allowing it to run on several ver-
sions, including the currently latest version PostgreSQL
14.4.

The internal functioning of DuBio is also based on the
possible worlds theory [60] and focusses on record-level un-
certainty. DuBio represents this uncertainty using a type
of Binary Decision Diagrams [15]. DuBio tries to address
issues found in other probabilistic database management
systems to deliver a system usable for real-world applica-
tions [60]. One of these improvements is that DuBio uses
a single column to store sentences, allowing the storage of
significantly larger sentences than would be possible with
MayBMS, while still providing a compact representation.
This is done by holding a dictionary of variables, which is
a complex structure stored in a separate database table in
a single cell [15]. This also allows for native expression of
OR-relations.

The query language used by DuBio is an extension to SQL
with added constructs for dealing with probabilistic data.
Unlike MayBMS, DuBio has not yet released a query lan-
guage that hides the complexity of the processing to the
user. The current method of querying is explicit and only
meant to be a temporary solution. Work is being done to
provide a simpler query language for DuBio [23].

As DuBio is a new system, no external research has been
conducted on its usability and performance. Internal re-
search has identified DuBio to be a promising technology
[15, 59], although development is still in progress to im-
prove the time efficiency of complex queries even further.

4. DATASET
In order to design a benchmark representative of real-
world scenarios and strain, a rich and fitting dataset should
be used. In this section, the requirements for this dataset
are laid down. A selection of datasets is evaluated to these
requirements and the dataset deemed most fit is selected.
Finally, an elaboration on the chosen dataset is provided.

4.1 Requirements Specification
As the goal of this research is to design a benchmark
for probabilistic databases, a suitable dataset should be
found. For this research, a dataset with the following char-
acteristics is required:

1. The dataset is a good representation of the real world,
both in the type of data and in size.

2. The dataset contains uncertainty suitable for data
integration purposes.

3. The dataset should be freely available.
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4. The dataset should be versioned. Experiments con-
ducted on the dataset should be reproducible.

5. The dataset is suitable to be inserted in a relational
database management system.

4.2 Dataset Evaluation
To verify which datasets are commonly used for entity
resolution, several researches have been analysed. The
datasets used in these researches can broadly be cate-
gorised in two types: self-collected datasets, as used in
[1, 2, 18, 34], and existing datasets, as used in [37, 46, 66,
67].

Regarding the self-collected datasets, it is found that they
are all on the small side. Although all freely available,
they only contain product data from up to two different
websites. Therefore, these datasets are not suitable for
this research as they do not meet requirement 1. It also
shows that creating a dataset ourselves for the purpose of
this research is not feasible.

From the existing datasets, the Web Data Commons data-
set was most frequently used [46, 66, 67]. Other datasets
found in the selection of researches include the Yahoo’s
Gemini Product Ads dataset [46], UCI datasets [37], and
the LEAPME-dataset [9].

When evaluating these datasets according to our require-
ments, the Yahoo dataset and the LEAPME-dataset are
not fit for this research. The Yahoo dataset does not meet
requirement 4, as the data can only be retrieved from the
API, which always retrieves the most current data. The
LEAPME-dataset contains data on four different product
categories, which are cameras, headphones, phones and
televisions. As all products lie in either of these four prod-
uct categories, this dataset is not very strong for both re-
quirements 1 and 2.

Both the Web Data Commons (WDC) dataset and several
UCI datasets meet all requirements. As the UCI datasets
are focused on machine learning and the suitable data sets
are smaller than the WDC dataset, the WDC dataset is
deemed superior to the other datasets for this research.
Datasets from Kaggle [27] were also evaluated, but none
were deemed more fit than the WDC dataset.

As it is not the goal of this research to provide a full
overview of datasets suitable for entity resolution research,
and as no survey paper was found on this topic, we are
content with the use of the WDC dataset as it fully meets
all requirements. Please note that any other dataset that
meets the requirements could have also been used for this
research.

4.3 Chosen Dataset
For this research, the WDC Product Data Corpus and
Gold Standard for Large-Scale Product Matching, Version
2.0 [63] will be used.

The WDC dataset is a large public training dataset for
product matching. It is produced by extracting schema.org
product descriptions from 79 thousand websites, which
provides 26 million product offers. Besides the full dataset,
they also offer an English language subset. This subset
consists of 16 million product offers [44]. Version 2.0 of this
dataset was released in 2020. It contains the same data as
version 1.0, but has a simplified identification scheme [63].

The product offers in the dataset are also clustered by Web
Data Commons. The 16 million product offers are catego-

rized in 10 million clusters. Each cluster contains offers of
the same product found on different websites. There are
roughly 8.5 million clusters with size 1, one million clus-
ters with size 2, and 400 thousand clusters with size 3 or
4. Clusters of a size greater than 80 are filtered out of the
dataset, as these are likely noise [44].

As the Web Data Commons dataset is provided with a
clustering of the products, it is interesting to see whether
the probabilistic approach presented in this research will
show a clustering similar to that present in the dataset.
The WDC Gold Standard also aids this goal. For this
standard, a set of 2200 pairs of offers were manually ver-
ified whether they belonged to the same product or not
[44]. This part of the dataset is particularly interesting, as
it can aid as a ground truth during the performance com-
parison of the various (probabilistic) relational database
technologies.

5. RESEARCH PURPOSE
The goal of this research is to design a benchmark with
the purpose of verifying the performance and scalability of
probabilistic databases. The benchmark will be designed
with real-world cases in mind, trying to get probabilistic
database technologies out of the scientific world and into
everyday applications. When the benchmark is designed,
the performance and scalability of the novel probabilis-
tic database DuBio and the state-of-the-art MayBMS will
be evaluated with this benchmark. The performance of
the deterministic DBMS PostgreSQL will be used as a
baseline. The experiments run with PostgreSQL will also
guide to show what the added value of using a probabilistic
database system is in the context of the chosen application
scenario.

For this research, the following research question will be
answered:

RQ How can a benchmark be designed to test and com-
pare probabilistic database management systems on
real-world strain?

The following sub-questions will be answered to guide in
answering the main question:

SQ1 What real-world scenario should the benchmark mea-
sure?

SQ2 How can a realistic probability model be designed to
express doubt in an uncertain dataset?

SQ3 What queries are representable for real-world use of
such a dataset for probabilistic databases?

SQ4 How do the novel probabilistic database DuBio
and the state-of-the-art MayBMS perform when
benchmarking these technologies with the developed
benchmark?

SQ5 How much added value does the use of probabilis-
tic databases provide, compared to deterministic
databases?

SQ6 What steps are still necessary to achieve widespread
use of probabilistic databases in everyday applica-
tions?
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6. METHODOLOGY AND APPROACH
This section describes the methodology that will be used
to answer the research questions defined in section 5. The
research required for answering these question can broadly
be divided into literature research, designing and quantita-
tive research. The research consists of two phases: design-
ing the benchmark and benchmarking the specified tech-
nologies.

6.1 Designing the benchmark
Designing the benchmark is part of SQ1, SQ2 and SQ3.
This phase will largely be done by performing literature
research and designing. For answering each of these ques-
tions, the design science philosophy will be used.

From the book of [65] and the paper of [43], the following
definition of design science is provided in the context of
this paper:

• Design science: The design and investigation of ar-
tifacts to serve human purpose in the context of the
research field.

In the case of this research, the context will be the use of
probabilistic databases with real-world product matching
data. Although design science was initially not developed
for use with information system design, the general accep-
tance and the research towards a fitting framework has
increased [22]. This results in a framework fit to solve
problems at the intersection of business and IT [43]. De-
sign science research is developed for large multi-paper re-
search [22]. For this research, an adapted version is used
for smaller research.

The approach used in this paper will be based on the
standard design science methodology, as described in [22],
[43] and [65]. As no consensus is yet reached on an ex-
act methodology, the phases will be used as a guideline
and adapted where it seems fit. The phases that will be
followed are:

1. Problem identification and motivation.

2. Define solution objectives.

3. Design and development.

4. Demonstration.

5. Evaluation.

6. Communication.

Phase 1 and 2 have largely been answered in this paper
already, but could be enhanced later. SQ1 will be the first
step in designing the benchmark for phase 3. It will consist
of performing literature review to identify the aspects that
should be covered by the benchmark.

SQ2 designs the dataset that the benchmark will use. In
this report, the dataset that will be used is defined. How-
ever, this dataset is altered to be presented in a deter-
ministic manner. For the benchmark, the dataset needs
to be transformed back to a nondeterministic state. Re-
search will be performed to verify how a realistic proba-
bility model can be assigned to the present uncertainty in
the dataset.

Answering SQ3 consists of two steps. First, literature re-
view will help identify common uses of product match-
ing in the real world and identify several general uses of
probabilistic databases that might be interesting to cover
with the benchmark. Second, fitting queries will be for-
mulated based on the literature research and additional

brainstorming. The insights from SQ1 will also aid in for-
mulating the queries for this sub-question.

From the literature research performed in this document,
it can be concluded that enough research is available to
answer each of these questions. Depending on the amount
of research already conducted on each of these topics, the
answer of the questions based on prior research can dif-
fer. To ensure the search for literature is as extensive as
possible, different research databases will be queried and
papers will be requested when not publicly available. Gaps
in earlier research will be supplemented with brainstorm-
ing.

When all these sub-questions are answered, the final de-
sign of the benchmark can be constructed and phase 3 of
the design cycle is finalised.

6.2 Benchmarking the technologies
Benchmarking the technologies is part of SQ4. Addition-
ally, SQ5 and SQ6 are answered by the insights that this
benchmarking provides.

In order to answer SQ4, DuBio and MayBMS will both
be tested with the designed benchmark. The results of
these tests will be described and analysed. Conclusions
on the performance will then be drawn. This contributes
to phase 4 and 5 of the design cycle.

SQ5 will be answered by also running PostgreSQL with
the benchmark. By comparing the results both in perfor-
mance and provided results, the gap between probabilistic
databases and deterministic databases can be identified.
Important points to discuss here are not only the differ-
ence in execution speed, but also that of the results. As
the WDC dataset already contains a clustering, it can be
verified how the results from this deterministic approach
differ from that of the indeterministic approach. The in-
sights that will be obtained from this analysis will be de-
scribed. This also contributes to phase 4 and 5 of the
design cycle, as SQ4 and SQ5 together will aid in both the
demonstration and evaluation of the final performance and
reliability of the designed benchmark.

Finally, SQ6 will be answered by identifying the points
where DuBio could be improved according to the results
of the benchmark. Additional literature research will be
performed to verify whether the identified areas for im-
provement have also been identified by earlier research.
This step contributes to phase 5 in the design cycle.

Step 6 of the design cycle will be obtained naturally by
detailing on the process and conclusions from this research.

The experiments for the final research will be run on two
servers of the university. MayBMS runs at a single ma-
chine with an Intel Xeon E5-2407 CPU @ 2.20 GHz, quad
core, 64 GB RAM, and 4 TB SATA hard drive. DuBio
runs at a single machine with an Intel Xeon e5-2403 CPU
@ 1.80 GHz, octa core, 64 GB RAM, and a composed 22
TB hard drive of 8 SATA hard drives in a RAID 0 config-
uration.

The machine that runs MayBMS contains an older instal-
lation of the MayBMS software. Therefore, issues caused
by updated packages that MayBMS uses are less probable.
DuBio is installed on a system that is better optimised for
the workload DuBio provides. The differences between the
machines should be taken into account when comparing
the performance of the two systems with the benchmark
test.
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7. INITIAL RESULTS
To verify the feasibility of the proposed methodology, some
initial experiments were run. These experiments have fo-
cused on setting up the dataset and running some simple
queries on all three database management systems. The
experiments performed in this section are run on a single
machine with an Intel Core i5-7200U CPU @ 2.5 GHz,
dual core, 8 GB RAM, and BLA. For these experiments
the same dataset will be used as for the final research.
However, instead of using the full 16 million offers, the
dataset will be capped to include only fifty thousand of-
fers.

The installations of MayBMS, DuBio and PostgreSQL each
run in their own Docker container. For these experiments,
Docker 4.9.0 is used. Each container also runs with their
own PostgreSQL installation. MayBMS runs with Post-
greSQL 8.3.3, and DuBio and PostgreSQL both run with
the current latest PostgreSQL version, PostgreSQL 14.4.

7.1 Dataset Analysis
Before the various database systems can be queried and
tested, a thorough understanding of the dataset should be
obtained. This section also discusses how the dataset was
loaded into the databases.

For this research, the normalised English offers dataset
(offers corpus english v2.json.gz) was downloaded from
the WDC product offers website [63]. Within the En-
glish offers dataset, each offer is represented as a JSON
object. An example offer can be found in Appendix A.1.
To provide a clear example of the structure of the data,
a product offer is displayed from which all information
is known. Only about 0.5% of the product offers in the
dataset contain no NULL values.

In order to query the data and test the three database
systems, the data needs to be put in a database. To do
this, the WDC product offer file was loaded into a Python
program, which transforms each offer in the file to a data
structure fit to be inserted into the databases. An adap-
tation was made to the Python program developed by Jan
Flokstra, which was created for version 1.0 of the WDC
product corpus dataset. The code used can be found at
GitHub [19].

To efficiently query the dataset, the structure was changed
to split the product offer identifier and the product infor-
mation in two separate tables. The database schema of
the dataset can be found in Appendix A.2.

To get a first impression on the dataset, some determin-
istic queries were executed. These queries can be found
in Appendix A.3. As the dataset used for this first im-
pression contains just a part of the full WDC dataset, the
results are purely indicative and a way to showcase what
information could be retrieved from the full dataset.

These queries provide us with the following information:

1. query 5+6: All product offers have a product cate-
gory, there is a total of 25 product categories.

2. query 7: USD is the currency most used, with 3115
occurrences, followed by EUR with 768 occurrences.
There are also 692 product offers that do not have a
currency specified. There are also numerous product
offers that have a random string as currency, such as
‘our price’.

3. query 8+9: There are 6758 product offers with more
than one product identifier. There is a total of 8

identifiers, of which /sku and /productID are most
used.

4. query 10+11: There are 858 product offers that
share a cluster with another product offer. There
are 534 clusters of size 2, 120 clusters of size 3, and
47 of size 4. The largest cluster is 178 product offers
large.

7.2 Testing DuBio
To show the feasibility of the final research, some sim-
ple probabilistic queries will be performed on both proba-
bilistic database systems and an initial impression on the
performance will be provided. The queries used for the
experiments with DuBio can be found in Appendix B.1.

For this demonstration, a preliminary database setup is
created. For this, the cluster_id column will be re-
moved and arbitrary probabilities will be assigned to the
product offers. For DuBio, two new tables are created:
pg_wdc_match containing the division of offers into clus-
ters with their sentences, and _dict containing the dic-
tionary with sentences and probabilities. Both tables are
filled with dummy data. Dummy data for pg_wdc_match

was generated using a hash function. This method was
chosen, as this provides a pseudorandom distribution of
offers over the clusters and disconnects the placement of
an offer in the first cluster of that in the second cluster. A
total of 512 clusters were created and each product offer
was put into two different product clusters and the cluster
-1, indicating that the offer has no other matches. The
division into the two clusters was generated by taking the
following steps:

• The product id was taken, appending ‘a’ for the first
cluster and ‘b’ for the second cluster.

• This is hashed with sha256 and converted to hex-
adecimal.

• The nine leftmost bits from the three rightmost bytes
are taken. This is interpreted as a number and con-
verted to decimal. The resulting number is the clus-
ter.

As one offer cannot occur twice in the same cluster, a check
is done. In such a case, a product offer is put in the next
cluster. The division of sentences among the products is
performed in a similar manner. Query 9 of Appendix B.1.1
took around 6 seconds to run.

For this experiment, cluster 200 was chosen to perform
queries on. Cluster 200 contains 183 product offers. Query
4 of Appendix B.1.2 showed the three categories ‘Pet Sup-
plies’, ‘Sports and Outdoors’ and ‘CDs and Vinyl’ to be
the most likely with 50, 45 and 43 percent likelihood re-
spectively. To test DuBio even further, a second set of
sentences is introduced to represent the confidence that
either of these options is the correct category. This re-
sulted in a likelihood of 15, 9 and 22 percent respectively,
showing that none of the present categories are very likely
to be the correct one.

Although this dummy example is simple, it shows that
the installation of DuBio works and that various types
of queries can be run. The execution time of the select-
queries were all well under a second, indicating that the
setup does not cause significant lag in performance. Ad-
ditionally, this shows that the chosen dataset is well fit for
use with probabilistic databases.
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7.3 Testing MayBMS
For testing the installation of MayBMS, the same experi-
ment is run as with DuBio. The code used for MayBMS
can be found in appendix B.2. Since MayBMS runs on top
of PostgreSQL 8.3.3, some of the functions used for Du-
Bio cannot be used. Therefore, some alternative functions
were used or are self-defined. This makes MayBMS slower
even for standard deterministic queries. Adding 150 000
rows to a table with Query 6 of Appendix B.2.1 took 35
seconds to run.

As with DuBio, this example with MayBMS will also run
tests with cluster 200. As the same offer division function
is used, the clustering over the two databases is the same.
This can also be verified by running Queries 1 and 2 of
Appendix B.2.2.

When querying the dataset with MayBMS, different re-
sults are obtained than with DuBio. When running
Queries 4 and 5 of Appendix B.2.2 the most likely
categories are not ‘Pet Sup-plies’, ‘Sports and Outdoors’
and ‘CDs and Vinyl’, but ‘Office Products’, ‘Comput-
ers and Accessories’, ‘Tools and Home Improvement’ and
‘Home and Garden’, each with 6,7% likelihood. Where
DuBio provides a likelihood of the category independent
of the other categories present, MayBMS gives a proba-
bility distribution over all possible answers. This explains
why the provided probability by MayBMS is that low, as
there are a total of 24 product categories in cluster 200.

Besides different results obtained, it was noted that
MayBMS was less intuitive to work with than DuBio.
This can be seen by the way Query 4 needs to be altered
for MayBMS to run without errors. When referring to a
probabilistic view or table in the FROM clause, MayBMS
fails to check for this probabilistic trait and throws the er-
ror that the conf() function is not supported for certain
queries. It was indicated that this behaviour was delib-
erately implemented to avoid unintended side-effects [30].
Thus, the correct way to formulate the query is by in-
cluding the full original query and transforming this to a
probabilistic sub-query in the FROM clause. Neverthe-
less, this implementation complicates queries significantly
adding additional difficulty to the formulation of complex
queries.

8. WORK PROGRAMME
There is a total of twenty weeks full-time indicated for
working on this graduation thesis. The provisional dead-
line for writing this thesis is set at 1 February 2023, but
this could change when faced with unforeseen challenges.
As more than twenty weeks are available, the workload
will be divided over twenty five weeks. The planning of
this thesis is provided in Appendix C.

In this chart, rough estimations are made of the time span
needed to answer the sub-questions of this research. De-
signing the benchmark will take an estimated thirteen
weeks. Benchmarking the three database systems and
evaluating gaps in current research will take an estimated
twelve weeks.

During the entire time span, attention is paid to finding
papers that provide additional substantiation of why this
research is of importance and to improving the introduc-
tion and background sections.

The final presentation of this thesis will be planned after
these 25 weeks.
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APPENDIX

A. WDC PRODUCT OFFERS DATASET

This appendix gives an overview of the structure of the WDC product offer dataset.

A.1 JSON structure of a product offer

01 | {
02 | "brand": "hp enterprise",
03 | "category": "Computers_and_Accessories",
04 | "cluster_id": 5481799,
05 | "description": "description ait1 35 70gb hot swap lvdpart number s option part 70

↪→ 40375 03",
06 | "id": 519,
07 | "identifiers": [{
08 | "\/mpn": "[704037503]"
09 | }],
10 | "keyValuePairs": {
11 | "category": "proliant",
12 | "sub category": "tapedrive",
13 | "generation": "2 4gb",
14 | "part number": "142074 001",
15 | "products id": "12849",
16 | "tape type": "dat",
17 | "native capacity": "2gb",
18 | "interface type": "scsi",
19 | "compressed capacity": "4gb",
20 | "form factor": "5 25 inch",
21 | "": ""},
22 | "price": usd 651 95,
23 | "specTableContent": "specifications category proliant sub category tape drive

↪→ generation 35 70gb part number 70 40375 03 products id 13255 capacity 35 70
↪→ gb interface type scsi lvd enclosure type canister hot swap configuration
↪→ type canister hot swap",

24 | "title": "null , hp 70 40375 03 ait1 35 gb hs lvd"
25 | }

A.2 Database schema of the dataset
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A.3 Dataset insight queries

01 | -- (1) Gives the joined tables to have a full overvew.
02 | SELECT *
03 | FROM pg_wdc_small pws
04 | LEFT JOIN pg_wdc_key_small pwks ON pws.id = pwks.prod_id
05 | LIMIT 20;
06 |
07 | -- (2) Create a view with all offers without NULL values.
08 | CREATE VIEW nonull AS
09 | SELECT *
10 | FROM pg_wdc_small
11 | WHERE category IS NOT NULL
12 | AND title IS NOT NULL
13 | AND description IS NOT NULL
14 | AND brand IS NOT NULL
15 | AND price IS NOT NULL
16 | AND spectablecontent IS NOT NULL
17 | AND keyvaluepairs IS NOT NULL;
18 |
19 | -- (3) The amount of products without null values.
20 | SELECT COUNT (*)
21 | FROM nonull;
22 |
23 | -- (4) Returns the percentage of offers that have no null values.
24 | SELECT
25 | (SELECT CAST(COUNT (*) AS decimal) FROM nonull) / (SELECT COUNT (*) FROM

↪→ pg_wdc_small) * 100;
26 |
27 | -- (5) Returns the amount of product categories.
28 | SELECT COUNT(DISTINCT category)
29 | FROM pg_wdc_small;
30 |
31 | -- (6) Returns the amount of products without a product categories.
32 | SELECT COUNT(category)
33 | FROM pg_wdc_small
34 | WHERE category IS NULL;
35 |
36 | -- (7) Returns the type of currencies and how often they occur.
37 | SELECT NULLIF(currency , ' ' ) AS currency , COUNT(currency) AS amount
38 | FROM (SELECT price , TRIM(regexp_replace(price , ' [0-9]+ ' , ' ' , ' g ' )) currency
39 | FROM pg_wdc_small pws
40 | WHERE price IS NOT NULL) AS currencies
41 | GROUP BY currency
42 | ORDER BY amount DESC;
43 |
44 | -- (8) Counts the amount of offers with >= 2 offer identifiers.
45 | SELECT COUNT (*)
46 | FROM (SELECT COUNT (*) AS ids
47 | FROM pg_wdc_small pws
48 | LEFT JOIN pg_wdc_key_small pwks ON pws.id = pwks.prod_id
49 | GROUP BY pwks.prod_id) AS count_id
50 | WHERE count_id.ids >= 2;
51 |
52 | -- (9) Returns the types of the product identifiers and how often they are used.
53 | SELECT DISTINCT id_type , count(id_type) AS products
54 | FROM pg_wdc_key_small
55 | GROUP BY id_type
56 | ORDER BY products DESC;
57 |
58 | -- (10) Counts the amount of clusters that have >= 2 products in them.
59 | SELECT COUNT(cluster_sizes.sizes)
60 | FROM (SELECT COUNT (*) sizes
61 | FROM pg_wdc_small pws
62 | GROUP BY cluster_id) AS cluster_sizes
63 | WHERE cluster_sizes.sizes >= 2;
64 |
65 | -- (11) Returns for each cluster size the amount of clusters.
66 | SELECT cluster_size , COUNT(cluster_sizes.cluster_size) AS amount
67 | FROM (SELECT COUNT(pws.id) AS cluster_size
68 | FROM pg_wdc_small pws
69 | GROUP BY cluster_id) AS cluster_sizes
70 | GROUP BY cluster_size
71 | ORDER BY cluster_size ASC;
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B. QUERIES FOR TESTING THE SETUP

This appendix provides the queries run with DuBio and MayBMS.

B.1 DuBio

B.1.1 Setting up the dataset

01 | -- (1) Remove the cluster_id column from the dataset.
02 | ALTER TABLE pg_wdc_small
03 | DROP COLUMN cluster_id;
04 |
05 | -- (2) Verify that the column is removed.
06 | SELECT * FROM pg_wdc_small LIMIT 10;
07 |
08 | -- (3) Create extensions to pgbdd of DuBio and pgcrypto for hasing.
09 | CREATE EXTENSION pgbdd;
10 | CREATE EXTENSION pgcrypto;
11 |
12 | -- (4) Create table to store matching product pairs.
13 | CREATE TABLE pg_wdc_match (
14 | cluster_id BIGINT ,
15 | prod_id BIGINT ,
16 | _sentence Bdd ,
17 | PRIMARY KEY (cluster_id , prod_id),
18 | FOREIGN KEY (prod_id) REFERENCES pg_wdc_small(id)
19 | );
20 |
21 | -- (5) Create the main dictionary table.
22 | CREATE TABLE _dict (name VARCHAR (20), dict DICTIONARY);
23 |
24 | -- (6) Create the dictionary.
25 | INSERT INTO _dict(name ,dict) VALUES ( ' mydict ' , dictionary( ' ' ));
26 |
27 | -- (7) Insert the random variables into the dictionary.
28 | UPDATE _dict
29 | SET dict=add(dict , ' c1 =1:0.7; c1 =2:0.2; c1 =3:0.1; c2 =1:0.3; c2 =2:0.3; c2 =3:0.4; c3 =1:0.3;

↪→ c3 =2:0.5; c3 =3:0.2 ' )
30 | WHERE name= ' mydict ' ;
31 |
32 | -- (8) Verify that the dictionary is initialised and filled.
33 | SELECT print(dict) from _dict WHERE name= ' mydict ' ;
34 |
35 | -- (9) Pseudorandomly fills the pg_wdc_match table with the products and their

↪→ identified categories and likelihood.
36 | INSERT INTO pg_wdc_match (cluster_id , prod_id , _sentence)
37 | SELECT
38 | UNNEST(ARRAY[
39 | ( ' x ' || ENCODE(DIGEST( ' a ' || id:: varchar (255) , ' sha256 ' ), ' hex ' ))::BIT(9)::int ,
40 | CASE WHEN
41 | ( ' x ' || ENCODE(DIGEST( ' b ' || id:: varchar (255) , ' sha256 ' ), ' hex ' ))::BIT(9)::

↪→ int
42 | =
43 | ( ' x ' || ENCODE(DIGEST( ' a ' || id:: varchar (255) , ' sha256 ' ), ' hex ' ))::BIT(9)::

↪→ int
44 | THEN
45 | ( ' x ' || ENCODE(DIGEST( ' b ' || id:: varchar (255) , ' sha256 ' ), ' hex ' ))::BIT(9)::

↪→ int + 1
46 | ELSE
47 | ( ' x ' || ENCODE(DIGEST( ' b ' || id:: varchar (255) , ' sha256 ' ), ' hex ' ))::BIT(9)::

↪→ int
48 | END ,
49 | -1]) AS cluster_id ,
50 | id AS prod_id ,
51 | UNNEST ((
52 | SELECT ARRAY[
53 | Bdd(FORMAT( ' c%s=1 ' , hash.val)),
54 | Bdd(FORMAT( ' c%s=2 ' , hash.val)),
55 | Bdd(FORMAT( ' c%s=3 ' , hash.val))]
56 | FROM (
57 | SELECT ( ' x ' || ENCODE(DIGEST( ' c ' || id:: varchar (255) , ' sha256 ' ), ' hex ' ))::

↪→ BIT(2)::int + 1 AS val
58 | ) AS hash
59 | )) AS _sentence
60 | FROM pg_wdc_small;
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B.1.2 Running queries on the dataset

01 | -- (1) Count the amount of offers in cluster 200.
02 | SELECT COUNT (*)
03 | FROM pg_wdc_match
04 | WHERE cluster_id = 200;
05 |
06 | -- (2) Get an overview of all offers in cluster 200.
07 | SELECT m.prod_id , m._sentence , p.*
08 | FROM pg_wdc_small p
09 | LEFT JOIN pg_wdc_match m ON m.prod_id = p.id
10 | WHERE cluster_id = 200;
11 |
12 | -- (3) Get the category and sentence from all product offers in cluster 200. Create a

↪→ view from this.
13 | CREATE VIEW cluster200 AS
14 | SELECT p.id, p.category , m._sentence
15 | FROM pg_wdc_small p
16 | LEFT JOIN pg_wdc_match m ON m.prod_id = p.id
17 | WHERE cluster_id = 200;
18 |
19 | -- (4) Get a probability distribution for the category of cluster 200 ' s product.

↪→ Create a view from this.
20 | CREATE VIEW likelihood_cluster200 AS
21 | SELECT c200.category , ROUND(AVG(prob(d.dict , c200._sentence):: NUMERIC) ,4) AS

↪→ probability
22 | FROM cluster200 AS c200 , _dict d
23 | WHERE d.name = ' mydict '
24 | GROUP BY c200.category
25 | ORDER BY probability DESC;
26 |
27 | -- (5) Get categories with high enough confidence (>0.4) and display their current

↪→ sentences. Create a view from this.
28 | CREATE VIEW high_confidence_cluster200 AS
29 | SELECT array_agg(c200.id) AS id, c200.category , AGG_OR(c200._sentence) AS

↪→ _sentence
30 | FROM cluster200 AS c200
31 | INNER JOIN (
32 | SELECT * FROM likelihood_cluster200
33 | WHERE probability > 0.4
34 | ) AS high_conf ON c200.category = high_conf.category
35 | GROUP BY c200.category;
36 |
37 | -- (6) Insert random variables into the dictionary. These display conflicting

↪→ attributes.
38 | UPDATE _dict
39 | SET dict = add(dict , ' d1 =1:0.5; d1 =2:0.3; d1 =3:0.2; ' )
40 | WHERE name = ' mydict ' ;
41 |
42 | -- (7) Insert new sentences
43 | UPDATE pg_wdc_match
44 | SET _sentence = (pg_wdc_match._sentence & Bdd( ' d1=1 ' ))
45 | FROM high_confidence_cluster200 AS hcc
46 | WHERE pg_wdc_match.prod_id = ANY(hcc.id)
47 | AND hcc.category = ' CDs_and_Vinyl ' ;
48 |
49 | UPDATE pg_wdc_match
50 | SET _sentence = (pg_wdc_match._sentence & Bdd( ' d1=2 ' ))
51 | FROM high_confidence_cluster200 AS hcc
52 | WHERE pg_wdc_match.prod_id = ANY(hcc.id)
53 | AND hcc.category = ' Pet_Supplies ' ;
54 |
55 | UPDATE pg_wdc_match
56 | SET _sentence = (pg_wdc_match._sentence & Bdd( ' d1=3 ' ))
57 | FROM high_confidence_cluster200 AS hcc
58 | WHERE pg_wdc_match.prod_id = ANY(hcc.id)
59 | AND hcc.category = ' Sports_and_Outdoors ' ;
60 |
61 | -- (8) Get the updated probability of the most likely categories.
62 | SELECT c200.category , ROUND(AVG(prob(d.dict , c200._sentence):: NUMERIC) ,4) AS

↪→ probability
63 | FROM cluster200 AS c200 , _dict d
64 | WHERE d.name = ' mydict '
65 | AND c200.category IN ( ' CDs_and_Vinyl ' , ' Pet_Supplies ' , ' Sports_and_Outdoors ' )
66 | GROUP BY c200.category
67 | ORDER BY probability DESC;
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B.2 MayBMS

B.2.1 Setting up the dataset

01 | -- (1) Remove cluster_id column from dataset.
02 | ALTER TABLE pg_wdc_small
03 | DROP COLUMN cluster_id;
04 |
05 | -- (2) Verify that the column is removed.
06 | SELECT * FROM pg_wdc_small LIMIT 10;
07 |
08 | -- (3) Create table to store matching product pairs.
09 | CREATE TABLE pg_wdc_match_setup (
10 | cluster_id BIGINT ,
11 | prod_id BIGINT ,
12 | probability FLOAT ,
13 | PRIMARY KEY (cluster_id , prod_id),
14 | FOREIGN KEY (prod_id) REFERENCES pg_wdc_small(id)
15 | );
16 |
17 | -- (4) Creating a table with probabilities for convenient inputting of these in the

↪→ pg_wdc_match table
18 | CREATE TABLE probs (probability float [4][3]);
19 | INSERT INTO probs (probability) VALUES
20 | ( ' {{0.7 ,0.2 ,0.1} ,{0.3 ,0.3 ,0.4} ,{0.3 ,0.5 ,0.2} ,{0.5 ,0.1 ,0.4}} ' );
21 |
22 | -- (5) Creating the UNNEST function available from PostgreSQL 9 onwards.
23 | CREATE OR REPLACE FUNCTION unnest(anyarray)
24 | RETURNS SETOF anyelement AS
25 | $BODY$
26 | SELECT $1[i]
27 | FROM generate_series(array_lower($1 ,1), array_upper($1 ,1)) i
28 | $BODY$
29 | LANGUAGE sql IMMUTABLE;
30 |
31 | -- (6) Pseudorandomly fills the pg_wdc_match_setup table with the products and their

↪→ identified categories and likelihood.
32 | INSERT INTO pg_wdc_match_setup (cluster_id , prod_id , probability)
33 | SELECT UNNEST(ARRAY[( ' x ' || ENCODE(DIGEST( ' a ' || id:: varchar (255) , ' sha256 ' ), ' hex ' ))

↪→ ::BIT(9)::int ,
34 | CASE WHEN
35 | ( ' x ' || ENCODE(DIGEST( ' b ' || id:: varchar (255) , ' sha256 ' ), ' hex ' ))::BIT(9)::int
36 | =
37 | ( ' x ' || ENCODE(DIGEST( ' a ' || id:: varchar (255) , ' sha256 ' ), ' hex ' ))::BIT(9)::int
38 | THEN
39 | ( ' x ' || ENCODE(DIGEST( ' b ' || id:: varchar (255) , ' sha256 ' ), ' hex ' ))::BIT(9)::int

↪→ + 1
40 | ELSE
41 | ( ' x ' || ENCODE(DIGEST( ' b ' || id:: varchar (255) , ' sha256 ' ), ' hex ' ))::BIT(9)::int
42 | END ,
43 | -1]) AS cluster_id ,
44 | id AS prod_id ,
45 | UNNEST ((
46 | SELECT ARRAY[
47 | (SELECT probability[hash.val ][1] FROM probs),
48 | (SELECT probability[hash.val ][2] FROM probs),
49 | (SELECT probability[hash.val ][3] FROM probs)]
50 | FROM (
51 | SELECT ( ' x ' || ENCODE(DIGEST( ' c ' || id:: varchar (255) , ' sha256 ' ), ' hex ' ))::

↪→ BIT(2)::int + 1 AS val
52 | ) AS hash
53 | )) AS probability
54 | FROM pg_wdc_small;
55 |
56 | -- (7) Create a probability space over the values in ' probability '. This makes the

↪→ pg_wdc_match a probabilistic view.
57 | CREATE VIEW pg_wdc_match AS
58 | REPAIR KEY cluster_id IN pg_wdc_match_setup WEIGHT BY probability;
59 |
60 | -- (8) Doing the same , but create a table this time.
61 | CREATE TABLE pg_wdc_match_table AS
62 | REPAIR KEY cluster_id IN pg_wdc_match_setup WEIGHT BY probability;
63 |
64 | -- (9) Check the result. Three new coloumns are added: _v0 , _d0 and _p0. When

↪→ selecting from the view , these three columns are hidden.
65 | SELECT *
66 | FROM pg_wdc_match_table
67 | ORDER BY cluster_id DESC
68 | LIMIT 50;
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B.2.2 Running queries on the dataset

01 | -- (1) Count the amount of offers in cluster 200.
02 | SELECT COUNT (*)
03 | FROM pg_wdc_match
04 | WHERE cluster_id = 200;
05 |
06 | -- (2) Get an overview of all offers in cluster 200.
07 | SELECT m.prod_id , m.probability , p.*
08 | FROM pg_wdc_small p
09 | LEFT JOIN pg_wdc_match m ON m.prod_id = p.id
10 | WHERE cluster_id = 200;
11 |
12 | -- (3) Get the category and sentence from all product offers in cluster 200. Create a

↪→ view from this.
13 | CREATE VIEW cluster200 AS
14 | SELECT p.id, p.category , m.probability
15 | FROM pg_wdc_small p
16 | LEFT JOIN pg_wdc_match m ON m.prod_id = p.id
17 | WHERE cluster_id = 200;
18 |
19 | -- (4) Get a probability distribution for the category of cluster 200 ' s product.
20 | SELECT category , conf() AS prob
21 | FROM (
22 | REPAIR KEY cluster_id IN (
23 | SELECT p.category , m.probability , m.cluster_id
24 | FROM pg_wdc_small p
25 | LEFT JOIN pg_wdc_match_setup m ON m.prod_id = p.id
26 | WHERE cluster_id = 200
27 | ) WEIGHT BY probability
28 | ) c200
29 | GROUP BY category
30 | ORDER BY prob DESC;
31 |
32 | -- (4) Query 4 in the way it was supposed to work in the MayBMS tutorial.
33 | SELECT c200.category , conf() AS prob
34 | FROM cluster200 AS c200
35 | GROUP BY c200.category
36 | ORDER BY probability DESC;
37 |
38 | -- (5) Get categories with high enough confidence ( >0.066).
39 | SELECT *
40 | FROM (
41 | SELECT category , conf() AS prob
42 | FROM (
43 | REPAIR KEY cluster_id IN (
44 | SELECT p.category , m.probability , m.cluster_id
45 | FROM pg_wdc_small p
46 | LEFT JOIN pg_wdc_match_setup m ON m.prod_id = p.id
47 | WHERE cluster_id = 200
48 | ) WEIGHT BY probability
49 | ) c200
50 | GROUP BY category
51 | ) conf
52 | WHERE prob > 0.066
53 | ORDER BY prob DESC;
54 |
55 | -- (6) Create another table to store new probabilities. These display conflicting

↪→ attributes.
56 | CREATE TABLE probs2 (prob float [4]);
57 | INSERT INTO probs2 (prob) VALUES ( ' {0.4 ,0.3 ,0.2 ,0.1} ' );
58 |
59 | -- (7) Update the setup table and insert the new probabilities.
60 | ALTER TABLE pg_wdc_match_setup
61 | ADD COLUMN probability2 FLOAT;
62 |
63 | UPDATE pg_wdc_match_setup
64 | SET probability2 = p.prob [1]
65 | FROM probs2 p
66 | WHERE pg_wdc_match_setup.prod_id = ANY(
67 | SELECT id
68 | FROM pg_wdc_small
69 | WHERE category = ' Computers_and_Accessories '
70 | );
71 |
72 | UPDATE pg_wdc_match_setup
73 | SET probability2 = p.prob [2]
74 | FROM probs2 p
75 | WHERE pg_wdc_match_setup.prod_id = ANY(
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76 | SELECT id
77 | FROM pg_wdc_small
78 | WHERE category = ' Home_and_Garden '
79 | );
80 |
81 | UPDATE pg_wdc_match_setup
82 | SET probability2 = p.prob [3]
83 | FROM probs2 p
84 | WHERE pg_wdc_match_setup.prod_id = ANY(
85 | SELECT id
86 | FROM pg_wdc_small
87 | WHERE category = ' Office_Products '
88 | );
89 |
90 | UPDATE pg_wdc_match_setup
91 | SET probability2 = p.prob [4]
92 | FROM probs2 p
93 | WHERE pg_wdc_match_setup.prod_id = ANY(
94 | SELECT id
95 | FROM pg_wdc_small
96 | WHERE category = ' Tools_and_Home_Improvement '
97 | );
98 |
99 | -- (8) create a table with a combination of probabilities. The select query shows the

↪→ structure of the table.
100 | CREATE TABLE pg_wdc_match_updated AS
101 | SELECT match1 .*
102 | FROM (REPAIR KEY cluster_id IN pg_wdc_match_setup WEIGHT BY probability) AS match1

↪→ ,
103 | (REPAIR KEY cluster_id IN pg_wdc_match_setup WEIGHT BY probability2) AS match2
104 | WHERE match1.prod_id = match2.prod_id;
105 |
106 | SELECT * FROM pg_wdc_match_updated LIMIT 10;
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C. GANTT CHART FOR THE FINAL RESEARCH

Figure 1. Gantt chart of the planning
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