
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

QuestionMark:
designing a benchmark

for probabilistic databases

Nikki Zandbergen
M.Sc. Thesis

July 2023

Supervisors:
dr. ir. M. van Keulen

dr. T. van Dijk

Advisor:
ing. J. Flokstra

Data Management & Biometrics
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

Preface

This master thesis is written to obtain the degree of Master of Science Computer Sci-
ence at the University of Twente. The subject of data science and database technology
has interested me since my time in secondary school. After my bachelor in Business
and IT, I wanted to dive deeper into the topic of data science, and thus my choice of
master specialisation was made. In the course probabilistic programming, the topic
of probabilistic databases was introduced to me. I found the technology intriguing
and it made me want to research it further. I was engaged in writing this thesis from
April 2022 until June 2023.

I hope this thesis inspires its reader to step outside of the known boundaries and ex-
plore the possibilities that probabilistic data processing has to offer. It openedmy eyes
and I am sure it will open yours too.

I want to thank my supervisors for supporting me during this long time. Maurice van
Keulen, Tom van Dijk and Jan Flokstra, thank you for supporting me also in times
where working on my thesis did not go as smooth as I had hoped for. Maurice, your
enthusiasm on this theme inspired me into working on this topic.

I also want to thank my family for supporting me throughout. You were always a
listening ear for me and you provided me with all the love and support I needed.

In loving memory of grandma.

No cats were harmed in the making of this thesis.

Nikki Zandbergen
Enschede, July 2023

i

Abstract

As increasing volumes of uncertain data are produced every day, the need for amature
probabilistic database management system grows. Various probabilistic database sys-
tems have been developed throughout the years, but none seems robust enough to
function in a real-world environment. To aid the development of a robust system,
The QuestionMark Benchmark for Probabilistic Databases has been developed. Ques-
tionMark is a benchmark specifically designed for real-world strain testing of proba-
bilistic databases. QuestionMark covers a wide range of functionalities, so that any
application area can be tested. To validate the performance of the benchmark, the
state-of-the-art probabilistic database MayBMS and the novel probabilistic database
DuBio are run through the benchmark to evaluate their effectiveness, efficiency and
appeal. Empirical evaluation shows that QuestionMark is a promising technology and
can fulfil its purpose.

iii

Contents

Preface i

Abstract iii

1 Introduction 1

2 Background 5
2.1 Probabilistic Databases . 5
2.2 Benchmarking . 7
2.3 Product Matching . 8
2.4 Technologies . 9

2.4.1 PostgreSQL . 9
2.4.2 MayBMS . 10
2.4.3 DuBio . 11

3 Theoretical Framework 13
3.1 Benchmark Foundations . 13
3.2 Database Benchmarking . 15
3.3 Fairness . 17

4 Methodology 19
4.1 Designing the Benchmark . 19
4.2 Dataset Selection . 20
4.3 Product Matching . 21
4.4 Query Selection . 25
4.5 Metric Selection . 25
4.6 Executing the Benchmark . 25
4.7 User Testing . 26

5 Benchmark 29
5.1 The QuestionMark Benchmark . 29
5.2 Dataset . 30
5.3 Parameter Tuning . 31
5.4 Queries . 33

5.4.1 Altering Queries . 38
5.4.2 Query Implementation Decisions 39

5.5 Metrics . 40
5.6 Design Decisions . 42

6 Empirical Evaluation 47
6.1 Case Study: Benchmarking MayBMS and DuBio 47

6.1.1 Case Description . 47
6.1.2 Benchmark Execution . 48

v

vi Contents

6.1.3 Results MayBMS . 49
6.1.4 Results DuBio . 53
6.1.5 Conclusion . 57

6.2 User Testing . 57

7 Conclusion 61
7.1 Discussion . 61
7.2 Limitations . 62
7.3 Future work . 64
7.4 Conclusion . 65

References 67

A The QuestionMark Benchmark for Probabilistic Databases 75
A.1 QuestionMark: The Dataset Generator 76

A.1.1 The Dataset Generator Roadmap 77
A.1.2 WDC Product Data Corpus and Gold Standard 78
A.1.3 Dataset Generator Parameters 78
A.1.4 Blocking Algoritm . 80
A.1.5 Matching Algoritm . 80

A.2 QuestionMark: The Probabilistic Benchmark 81
A.2.1 The Probabilistic Benchmark Roadmap 81
A.2.2 Benchmark Parameters . 82

A.3 Benchmark Queries . 82
A.3.1 Queries . 82
A.3.2 Altering Queries . 83

A.4 Produced Results . 84
A.4.1 Metrics . 85

A.5 Digesting the Results . 87
A.5.1 Effectiveness . 87
A.5.2 Efficiency . 88
A.5.3 Appeal . 89
A.5.4 Drawing Conclusions . 89

A.6 Including Other Database Management Systems 90
A.6.1 Including any new Probabilistic DBMS 90
A.6.2 Including a new Non-PostgreSQL Based DBMS 91

A.7 Query Implementations . 91
A.7.1 Queries in Pseudocode . 92
A.7.2 Queries in DuBio . 97
A.7.3 Queries in MayBMS . 100

B WDC Product Offers Dataset 107
B.1 Elaboration on the Dataset . 107
B.2 JSON Structure of a Product Offer . 107

C Performance 109
C.1 Blocking Algorithm Performance . 109
C.2 Matching Algorithm Performance . 114

Contents vii

D User Study 117
D.1 Informed Consent Form . 117
D.2 Formal Experiment . 121
D.3 Interview Questions . 122
D.4 Extensive Results . 122

E Additional Details Case Study 129
E.1 Docker images . 129
E.2 Raw Results . 130

1
Introduction

Although the field of probabilistic databases has been studied for over two decades, a
breakthrough in its use outside the academic world has yet to happen. The theoretical
foundations of probabilistic databases have been established and the first few proto-
types have shown their potential. However, the corporate world remains loyal to the
deterministic processing of data, even while a large part of the data produced today is
incomplete or uncertain.

Having uncertain data treated in a deterministic manner ignores the many opportu-
nities that treating that data in an indeterministic manner offers, and it might even
lead to incorrect decisions due to incorrect data displaying [20]. Probabilistic data
processing can aid decisions in more scientific areas, such as bio-informatics [92] and
healthcare [62], but also adds value in various business processes, which rely on deci-
sions based on data fromdifferent sources. To get uncertain data ready for determinis-
tic decision-making, data cleaning is performed to remove inconsistencies in the data.
This process consumes significant time, while the risk of making wrong decisions due
to badly cleaned data is still present. Probabilistic data querying solves this issue. Be-
ing able to query raw business data in a probabilistic manner provides an improved
information representation to base business intelligence decisions on [20]. It is thus
not the case that the availability of good quality probabilistic databases only aids the
scientific world; on the contrary. A wide range of sectors could benefit from the use of
probabilistic DataBase Management Systems (DBMS).

To enable this step towards real-world usability, a standardised manner of verifying
the performance and functionality of probabilistic databases should be established.
Benchmarking can deliver this [54]. Benchmarking provides a fair comparison of two
different systems. While many benchmarks are available for deterministic databases,
such as TPC and SPEC [54], there is no current standard for probabilistic databases.
Being able to benchmark probabilistic databases can play a crucial role in establishing
widespread use of probabilistic databases in the real world.

As data is often treated as if it were certain, it might not even be obvious to those who
manage the data that what they process is actually uncertain. Uncertain or incom-
plete data is common in real-world scenarios and can be retrieved from many areas.

1

2 Chapter 1. Introduction

These include sensor data [3, 13, 44, 50, 74], scientific data collection [7, 48, 70, 94],
data integration (data deduplication) [11, 23, 87, 49, 63, 70, 76], user profiling [94],
medical data [5, 48, 59] and human-entered data [7]. Data can become uncertain due
to measurement errors, noise, incompleteness, or inconsistencies [3], though it could
also be that the data is deterministic, but our understanding of that data is uncertain
[23]. Being able to express and query this uncertainty in a non-deterministic manner
is important for a thorough understanding of the data and to enable well-established
decisions based on that data [70].

Traditional databases are designed to store exact data and are limited in their ways
to handle uncertain data. This makes it difficult or sometimes impossible to work
with uncertainty in data, causingmany application opportunities to remain untouched
[44, 74]. To unlock these opportunities, probabilistic databases have been developed.
Probabilistic databases can omit the cost of enforcing certainty in data and can en-
able applications that were otherwise unexplored [23]. Unfortunately, no probabilis-
tic database management system to date performs well enough to be used in various
real-world scenarios [91].

To add to the research on probabilistic databases and to join the movement towards
real-world usability, a benchmark will be designed. The goal of this benchmark is to
deliver a standard for testing probabilistic database systems for real-world usability.
When this benchmark is designed, the novel probabilistic database DuBio [88] and
the state-of-the-art probabilistic database MayBMS [6] will be run on the system to
verify the usability.

During this research there will be a special interest in product matching. Product
matching is a form of entity resolution [49], which refers to the process of identifying
which data entities from multiple sources refer to the same real-world entity [65, 96].
Entity resolution aids the goal of data integration, which should lead to an increased
data quality and size usable for further analysis [96].

The task of product matching is not trivial. When combining product data frommore
than one source, chances are that two or more sources disagree in the value of an at-
tribute of a single product [65]. In that case, it should be determined what source
contains the correct attribute value, which is impossible to do both reliably and effi-
cient. Another issue is determining what products are the same in the first place, as
conflicting attributes in product offers make the same products appear different. To
solve issues like these, probabilistic data integration can be used. With probabilistic
data integration, products from disagreeing sources can still be used. Their product
information will then be displayed with an uncertainty about the possible values.

Although the product matching case will be used to evaluate the performance and
showcase the possibilities of a probabilistic DBMS, the use of this research is not lim-
ited to product matching. Various business processes rely on the integration of sys-
tems with overlapping information or on the processing of inherently uncertain data.
Having a system that can translate this uncertainty and display it to the user of the
system can enhance business intelligence decisions and tackle the issues discussed
earlier.

3

To support the entry of probabilistic databases in business applications, this paper
aims to answer the following research questions:

RQ1 How can a benchmark be designed to test and compare probabilistic database
management systems on real-world strain?

RQ2 Howdo the novel probabilistic databaseDuBio and the state-of-the-artMayBMS
performwhenbenchmarking these technologieswith the developedbenchmark?

The rest of this paper is structured as follows. In Section 2 an overviewwill be given on
previous work on probabilistic databases, benchmarking, product matching and the
technologies used in this research. Section 3 provides the theoretical framework on
which the benchmark design will be based and Section 4 discusses the methodology
used to create the dataset, design the benchmark and verify the performance of this
benchmark. The full benchmark designwill be presented in Section 5. The benchmark
will then be put to the test with DuBio and MayBMS, and the results are discussed in
Section 6. The conclusion of this research is presented in Section 7. The discussion,
future work and limitations are also discussed in this final section.

The manual provided with QuestionMark is provided in Appendix A. In Appendix B
more information on the used dataset is provided. Appendix C contains an evaluation
on the performance ofQuestionMark: TheDataset Generator. Additional information
on the performed user study can be found in Appendix D. The raw results from the
empirical evaluation can be found in Appendix E.

2
Background

In this chapter, the definition of a probabilistic database will be given and a back-
ground on probabilistic databases will be provided. Previous work on benchmarking
technologies for databases will be discussed and the shortcomings of thosewill be eval-
uated. Product matching of datasets will also be discussed. Finally, the technologies
used in this research are presented and discussed.

2.1. Probabilistic Databases
Although probabilistic databases could be seen as an extension to traditional deter-
ministic databases, the data they process is vastly different. Where databases were
traditionally designed to only include deterministic data, data generated nowadays is
increasingly more uncertain. Because of this, probabilistic databases were developed.

In general, a probabilistic databasemodels a set of possible databases, as opposed to a
single one in a traditional database [11]. Probabilistic databases are systems that store
uncertain data and support complex queries that translate this uncertainty to the user
[22]. In probabilistic databases, uncertain data is annotated with a confidence score.
This confidence score is interpreted as a probability and thus mathematical computa-
tions can be performed on them [22]. By having these uncertain attributes, different
possible databases can be constructed. The set of possible databases is also referred
to as the set of possible worlds, where each database instance is a representation of a
possible world. When additional evidence is provided to the dataset, it could be that
certain possible worlds are not true anymore. These worlds are then removed from
the set of possible worlds and the probabilities of the remainingworlds are normalised
[47].

Theoretically, when a set of possible worlds would be queried, the query answer would
be the average of the result that the query would return in each possible world sepa-
rately [90]. In reality, implementations of probabilistic databases are more complex.
If all possible worlds were to be modeled and an exact probability calculation over all
of those would be performed, execution time would be exponential [76].

Although the exact implementation of different probabilistic databases vary, they are

5

6 Chapter 2. Background

all developed to serve the same goal. Earlier research has identified various proper-
ties that a probabilistic DBMS should possess. These properties include scalability,
expressiveness, succinctness, efficiency, genericity and convenience [9, 48, 90].

Within this research, the following definitions are used regarding probabilistic
databases:

• Possible world: A possible world is an element from a set of possible worlds,
where p[i] is its probability and Rk denotes the amount of relations in that possi-
ble world [46].

⟨Ri
1, . . . , R

i
k, p

[i]⟩ ∈ W

• Probabilistic database: A probabilistic database is a finite set of structures,
where each set of relations within the structure has a valid probability [46].

W = {⟨R1
1, . . . , R

1
k, p

[1]⟩, . . . , ⟨Rn
1 , . . . , R

n
k , p

[n]⟩}

where
∑

1≤i≤n

p[i] = 1.

• Descriptive sentence: A descriptive sentence describes a subset of possible
worlds using the notation of set theory [89]. This research uses the term sen-
tence for conciseness.

The idea of having uncertain databases has been researched for long. First researches
on uncertain databases date back to the early 1980’s [34, 42], where the focus lay on
managing databases containing null-values and large dependencies, and providing a
mathematical foundation for these theories. In 1997, the first prototype of an uncer-
tain database system was released, called ProbView [50]. Today, the focus has shifted
towards practical implementations of databases that can manage uncertain and in-
complete data conveniently.

It was found early that probabilities are a very powerful, yet complex tool formanaging
uncertainty [50]. Although earlier research identified several ways in which uncertain
data could be modelled [23], the focus of the research community eventually shifted
to a probabilistic approach for the implementation of uncertain databases. Hence
why they are called probabilistic databases in this research. Different probabilistic
databases have been developed, attempting to provide a system that can be used in
the real world, but with no success. Even to date, no probabilistic database system is
able to provide near-exact probability calculations on larger amounts of data [76, 92].

Over the years, some of the more promising probabilistic databases developed are
MayBMS [7], MCDB (Monte Carlo Database) [43], and Trio [94]. Although these all
serve the same goal, the internal functioning of each of these systems differ. On a
high level, MayBMS and Trio provide probabilities based on tuple-level uncertainty,
whileMCDB calculates these based on attribute-level uncertainty [86]. The expressive
power of these uncertainty models also differ. When assigning probabilities to tuples,

2.2. Benchmarking 7

these probabilities are independent of each other, aswith Trio. MayBMS solved this in-
dependency issue by providing world set descriptors, which describe this uncertainty
relation [55].

Recently, a new type of probabilistic database has emerged: open world probabilistic
databases. In normal probabilistic databases, it is assumed that the true world exists
among one of the possible worlds. In an open world, the possibility is added that the
true state could be one not present among the known possible worlds [19, 18]. As the
challenges of managing open world probabilistic databases have not yet been solved,
focus in this research is merely on closed world probabilistic databases.

2.2. Benchmarking
In order to properly and fairly test a new piece of software, benchmark testing can be
used. A benchmark provides a standardisedmanner to test the performance and func-
tionality of a specific type of software. It can aid in making meaningful comparisons
between different technologies and identify opportunities to improve the tested soft-
ware. For a benchmark to be fair, it should work indiscriminately [46]. This implies
that the benchmark itself may not favour one technology over the other and should
focus on the environment instead of the system.

From the Oxford English Dictionary, to benchmark has the following definition:

• Benchmark: To evaluate or check (something) by comparison with an estab-
lished standard; to measure against a comparable or equivalent point of refer-
ence, esp. in order to assess performance or set performance standards [61].

Benchmarking was originally defined as a process of understanding what is of impor-
tance for the success of a business. Benchmarking in this context is a continuous pro-
cess that produces hard data, where best practices from other companies are used to
performquality improvement in the business [51, 56]. This definition is tweakedwhen
benchmarking was used also in areas like software engineering, where focus now lies
on evaluating the performance of a specific software against one or multiple reference
systems [69].

The process of benchmarking software technologies is an essential step towards real-
world usability, as it brings several advantages that would be hard to obtain other-
wise. When benchmarking a technology, its performance is compared to that of simi-
lar technologies. The benchmark can reveal potential areas of improvement and can
aid in the establishment of that improvement by showing how competing technolo-
gies deal with the area [56]. This learning is best done by a benchmark that provides
both qualitative and quantitative measures. A good benchmarks provides an incen-
tive for improvement and delivers the tools to do so [56]. A benchmark additionally
provides convenience in testing technologies. Without a benchmark, a technical spe-
cialist should be hired to test a system thoroughly, which would cost a business many
resources in terms of time and money [59]. Apart from these benefits for the devel-
opers of the software technology, the benchmark also provides a standardised way to
compare various technologies for potential consumers [54].

Designing a proper benchmark is no trivial task. A benchmark for database technolo-

8 Chapter 2. Background

gies consists of both a dataset and a set of queries. Both the dataset and queries need
to be representative of the real-world use that the technology will encounter. When
these are both established, the design of testing should be considered.

Numerous benchmark tools are already available for testing deterministic database
management systems. These include Apache JMeter, BAPco, SPEC, TPC andWiscon-
sin [33, 54], of which TPC is themost well-known. The deterministic relational DBMS
PostgreSQL also provides its own benchmark with its software. With this, users of the
system can perform their own benchmark tests [83].

For probabilistic databases, no standard benchmark tools are available yet [85].
Lately, more research is being conducted to provide this. LUBM is a benchmark that
can be used and scaled to handle an arbitrary number of probabilistic statements in
the context of SparQL [73]. MayBMS created an adaptation of the TPC-H benchmark
to test their system, called Probabilistic TPC-H [48]. Other researches also designed
their own benchmark to test MayBMS, such as [15] and [85]. However, none have
reached a widespread use within the research community.

One of the reasons these benchmarking technologies do not suffice to be used in the
real world, is that they do not make use of a real-world undeterministic dataset. Prob-
abilistic TPC-H and the two MayBMS benchmarks make use of synthetic data and
synthetic uncertainty. Other benchmarking technologies focus more on uncertainty
in other types of uncertain data, such as Linked Open Data with LUBM.

Currently, there is thus no benchmark tool that can be used as a standard for testing
probabilistic database management systems. There is a need to bring the real-world
application of these technologies towards a novel benchmark.

2.3. Product Matching
The benchmark presented in this research stimulates real-world load of probabilistic
database management systems in the context of entity resolution and product match-
ing. Entity resolution is the process of identifying what data entities represent the
same real-world entity [11, 57, 65]. It is the first step in the process of data integra-
tion and product matching [57]. Product matching is also called schema matching or
ontology matching and is a process that can be applied to heterogeneous sources of
structured or semi-structured data that describe the same real-world entities [10, 96].

Identifying similar products in different sources is a challenging task, as the data on
a single product is almost always inconsistent. One source might provide richer data
than the others, or a source might include a completely different attribute value [2,
72]. Different product titles may describe the same entity, but the same title might
also describe two different entities [10]. Data can also differ due to different naming
conventions, the use of abbreviations, typographic errors, missing values or data obso-
lescence [11, 49, 63]. A website might also choose to display a product differently due
to marketing decisions [65]. The lack of a labelling standard for products on e-shops
also complicates the process of product matching [72].

The area of product matching is widely studied and commonly applied in various cor-
porate settings. For instance, there are numerous comparison websites that collect

2.4. Technologies 9

product data from different web shops. These provide the user of the platformwith an
overview of all product providers and help them select the best possible deal [2]. The
continuous growth of the e-commerce industrymakes that evermore anddiverse prod-
uct information becomes available. With this growth, the interest in product match-
ing increases andmore powerful productmatching technologies are needed to process
these volumes of data [2, 49].

Ayat et al. [11] motivated that while research on entity resolution for certain data has
been well studied, research on applying entity resolution on uncertain data has still
been lacking. Moreover, research on entity resolution mainly focuses on providing
the user a deterministic answer. This raises issues with incorrect product matches,
essentially showing the user wrong information. In this research, the goal of product
matching is to present the user with a confidence score in the match, once this match
is sufficiently uncertain. By doing so, the user will be notified by the possible incorrect
match, allowing them to be critical of the shown results themselves. Undoubtedly, if
time were of no concern, humans would outperform any product matching software
on the market today.

In that sense, the area of product matching matches the philosophy of probabilistic
databases well. As cited by [20], the importance of doubt has been stressed since
ancient times:

“If a man will begin with certainties; he shall end in doubts; but if he will be content
to begin with doubts, he shall end in certainties.” (Francis Bacon, 1605)

“Doubt is one of the names of intelligence.” (Jorge Luis Borges, 1889)

The area of entity resolution and productmatching allows for a good platform to show-
case the possibilities of probabilistic databases and can aid in demonstrating the added
value that using probabilistic databases can bring.

2.4. Technologies
For this research, two probabilistic relational database management systems are used
and put to the test with the designed benchmark. Both are built upon PostgreSQL,
a deterministic DBMS. In this section, each of these systems will be introduced, and
their identified strengths and weaknesses from earlier research will be discussed.

2.4.1. PostgreSQL
PostgreSQL [82] is an open source relational databasemanagement system. Its design
was first presented by the University of California in 1986 and was originally called
POSTGRES [78]. Now, PostgreSQL is developed and maintained by the PostgreSQL
Global Development Group and has grown to the fourthmost used relational database
management system worldwide [77].

PostgreSQL has earned strong reputation by providing a rich relational databaseman-
agement system, able to run on all major operating systems, while being free and open
source. It offers a reliable high-performance system and is fully ACID-compliant [82].
Additionally, PostgreSQL is fit as a solid foundation for any extension project. Since

10 Chapter 2. Background

it is built with extendibility in mind, features such as custom data types and functions
can easily be added. It also makes use of the liberty license, meaning that its source
code can be freely adapted and distributed for any purpose [83]. Hence why many
projects, including MayBMS and DuBio, run on top of PostgreSQL.

2.4.2. MayBMS
MayBMS [6] is one of the first relational database management systems able to
manage uncertain and incomplete data. MayBMS was first introduced in 2006 and
promises a space and time efficient query executionwith scalable evaluation [7]. Their
aim is to have a robust database system that could be used in real applications [46].
MayBMS is developed on top of PostgreSQL in a way to ensure a fully integrated sys-
tem [7, 46]. The current version ofMayBMS requires to be run with PostgreSQL 8.3.3,
released in 2008, and offers all functionality present in that version [48].

The internal functioning ofMayBMS is based on possible worlds theory [7] and usesU-
relational databases [9]. U-relations focus on record-level uncertainty. For this, three
additional columns are added to a record per uncertainty: one displaying the random
variable, one for its value, and the third containing the probability [46]. Because of
this design, MayBMS supports complex dependencies [55].

Regarding the query design, MayBMS uses an SQL-like language to query the proba-
bilistic data. It hides the complexity for the user and rewrites andoptimises the queries
once submitted. The query language is an extension on the SQL syntax, with a few
adjustments. MayBMS dropped the support for standard SQL aggregates and intro-
duced new probabilistic aggregates and constructs for dealing with incompleteness
and probabilities. [8].

Experiments conducted by the developers of MayBMS showed that the system can ful-
fil the expectations of being a usable probabilistic DBMS. These experiments showed
a runtime execution close to that of conventional query evaluation [7] and suggest that
MayBMS will perform well in real-world scenarios [5, 48].

Various researches investigating the usefulness and opportunities of probabilistic
databases have used MayBMS as a prototype. [3] and [59] used MayBMS for the pur-
pose of detecting faulty sensors and modelling patient counts respectively. Both re-
searches found MayBMS to be of great use. Also [92] reported MayBMS to function
well for the given bio-informatics task.

Although MayBMS was very competitive for its time, it also contains properties that
make its use less practical for real-world applications. The following issues were re-
ported in earlier research on MayBMS:

1. There is a limit to the amount of random variable assignments MayBMS sup-
ports due to the design decision of adding three new columns per random vari-
able [76, 92]. This issue is due to a restriction fromPostgreSQL on themaximum
amount of columns per table [82], whichwill be reachedwhen constructing large
and complex sentences. A maximum of 500 random variable assignments can
be supported per record [92].

2. MayBMS cannot handle OR-relations in sentences [7]. When having to digest

2.4. Technologies 11

an OR-relation, it will be translated to an AND-relation with negations. This
complicates the formulated sentences, requiring more columns to store these
sentences.

3. Aquery runwithaconf()will always return an approximation of the probabilities,
even if returning an exact probability is possible or evenmore time-efficient [76].

4. The performance of MayBMS is not always stable. [15] noted that MayBMS re-
ported errors and memory issues on certain runs on random data, especially
when data sets grew over 1 million records. [76] reported a rapid growth of run-
time when facing larger datasets.

5. For the purpose of the research of [76], MayBMS did not work out-of-the-box
and had to be tweaked to support relations of arbitrary arity and provide a fair
timing.

2.4.3. DuBio
DuBio [88] is a novel probabilistic database developed by theUniversity of Twente. Al-
though not yet officially introduced, its source code can already be downloaded to test
the system and run experiments. The aim of DuBio is to provide real-world scalability
of probabilistic data processing on complex queries. DuBio is built as an extension
of PostgreSQL [20], making it less dependable on a specific PostgreSQL version and
allowing it to run on several versions, including the current latest version PostgreSQL
14.3.

The internal functioning of DuBio is also based on the possible worlds theory [91], and
focusses on record-level uncertainty. DuBio represents this uncertainty using a type
of Binary Decision Diagrams [20]. DuBio tries to address issues found in other proba-
bilistic database management systems to deliver a system usable for real-world appli-
cations [91]. One of these improvements is that DuBio uses a single column to store
sentences, allowing the storage of significantly larger sentences thanwould be possible
withMayBMS, while still providing a compact representation. This is done by holding
a dictionary of variables, which is a complex structure stored in a separate database
table in a single cell [20]. This also allows for native expression of OR-relations.

The query language used by DuBio is an extension to SQL with added constructs for
dealing with probabilistic data. Unlike MayBMS, DuBio has not yet released a query
language that hides the complexity of the processing to the user. The current method
of querying is explicit and only meant to be a temporary solution. Work is being done
to provide a simpler query language for DuBio [37].

AsDuBio is a new system, no external research has been conducted on its usability and
performance. Internal research has identifiedDuBio to be a promising technology [20,
71], although development is still in progress to improve the time efficiency of complex
queries even further.

3
Theoretical Framework

In this chapter, the theoretical framework of database benchmarking will be provided.
Providing an overview on the foundations of benchmarking and database benchmark-
ing specifically aids in substantiating the design decisions made in this research. The
benchmark in this research will follow best practices from benchmarking generally
and from earlier research on and with database benchmarking. Fairness of database
benchmarking will also be discussed.

3.1. Benchmark Foundations
As discussed in Chapter 2, benchmarking is used to properly and fairly test a piece
of software. For a benchmark to have these properties, it needs to be well-designed.
That said, it is crucial to know what ‘well-designed’ means and how this could be es-
tablished.

The basics of benchmarking as we know it now have been formed around 1970, where
an increased interest in benchmarking emerged in the research community [80]. Al-
though there is still no consensus on a universal benchmarking process, the flow of
benchmark testing discussed in the various sources is mostly similar. The differences
are partly due to thewide range of systems andprocesses that can be testedwith bench-
marking, each requiring a tailored approach and focus. The benchmark designed in
this research is no different.

A benchmark, in general, measures three aspects. In order of decreasing importance,
these are:

• Effectiveness, which relates to the quality of fulfilling the purpose;

• Efficiency, which relates to the use of resources and to execution speed;

• Appeal, which relates to the human element, including satisfaction of use.

Some studies that use benchmark testing to showcase the abilities of the tested system
focus mainly on the efficiency and omit effectiveness and appeal in their benchmark
test. Examples can be found in [15] and [54]. A good benchmark captures all these

13

14 Chapter 3. Theoretical Framework

three aspects and guides the user in interpreting the results so that meaningful con-
clusions can be drawn on each aspect.

The effectiveness, efficiency and appeal of a system can be measured using different
metrics. A metric measures various business processes or software specifications and
expresses these in numbers. Common metrics express aspects as cost, risk, through-
put or total execution time. Since a benchmark test should be kept simple, decisions
need to be made on what metrics are relevant for the system or process that is be-
ing benchmarked. Often a combination is used of generic, easy to obtain metrics and
system or process specific metrics [35]. The metrics for a benchmark should also be
carefully considered. It is important to include both qualitative and quantitative met-
rics that can be expressed with sufficient precision, and to offer the context in which
thesemetricsmatter and how the results should be interpreted [56]. When themetrics
are specified, it should be explained how these metrics can be obtained.

The processes that produce these metrics consume data doing so. When benchmark-
ing business processes, the process itself as well as the data that is fed into that process
are often both evaluated when performing the benchmark study. When benchmark-
ing software systems, it is common to have a dataset delivered with the benchmark as
to ensure reproducibility when testing different pieces of software. For the benchmark
to be meaningful, this dataset should be a representation of the data that the software
or process digests during its real-world use.

When the overall benchmark design it laid down, details of the benchmark design
should be established. These details include the amount of iterations required per
metric and the estimated duration of the benchmarking exercise.

When benchmarking, it is important to iterate the tests. More iterations lead to more
reliable results. By iterating, the case that an underlying unknown variability influ-
ences the results is minimized [33]. Earlier benchmark researches varied between
three and ten iterations [29, 33, 48, 85, 96]. The average over these iterations is then
used as the value of the metric. When measuring the performance of simple queries,
hardware performance could influence the execution time more than the duration of
the query itself. In these cases, the query can repeatedly be run and the total execution
time is measured over these runs [15, 43].

It can also be a good indication for the user to show the duration of the benchmarking
exercise. Providing this can help businesses in setting up targets and deadlines [24].

Apart from these benchmarking elements, earlier research has also identified several
criteria that a well-designed benchmark should comply to. The following seven char-
acteristics of a well-designed benchmark were identified by [35], [40] and [56]:

• Fairness. The tested systems should be compared fairly;

• Interoperability. The benchmark should be easy to implement on different sys-
tems and has a common format;

• Relevance. The benchmark performs operations typical for the domain;

• Representative. The benchmark performance metrics are accepted by industry
and academia;

3.2. Database Benchmarking 15

• Reproducibility. The benchmark is versioned. Earlier benchmark tests can be
reproduced and verified;

• Scalability. The benchmark should be scalable to larger and smaller systems
and should work on parallel computer systems;

• Simplicity. The benchmark should be transparent and understandable.

These seven characteristics arewidely used to verify the validity of a benchmark. Other
characteristics, such as ‘ethical practices’ mentioned in [51], can also be used. How-
ever, as these characteristics were found to be of lesser relevance to the benchmark
designed in this research, elaboration on these is omitted.

When the benchmark is designed, it should be implemented in the business to gain
intelligence from the benchmark test. Most benchmarking processes described in lit-
erature have a strong business focus. The benchmark processes described in literature
vary in the amount of steps and phases and in the type of benchmarking applied. In
general, benchmarking contains the following phases [4, 31, 51, 56]:

1. Planning. The benchmarking subject and partners are identified. Data collec-
tion methods are also determined in this phase;

2. Analysis. The benchmarking information is gathered. The current competitive
gap is determined and an analysis is made on where the company wants to be;

3. Execution. The benchmark is used to measure performance and is recalibrated
where needed;

4. Learning. The benchmark results are analysed and changes are implemented
where required.

A benchmark thus has three basic building blocks, which are the process to be mea-
sured, the metrics and the dataset. All elements should be carefully considered when
designing the benchmark. To guide the user of the benchmark, details of the bench-
mark and how it should be implemented should also be specified. Details include the
amount of iterations required and the estimated time required to perform the bench-
mark test. A well-designed benchmark also covers the effectiveness, efficiency and
appeal of a process or software, and complies to the seven characteristics mentioned
in this chapter.

3.2. Database Benchmarking
When it comes to testing database technologies, the potential of having a standardised
benchmark test was noted. The first database benchmark tests were published around
1990 [35] and research in the area has continued ever since. Database benchmarking
is now a commonmanner of testing new and existing database technologies. An array
of database benchmarks have been published, where each benchmark targets a differ-
ent type of database technology or a different use case of the technology. With all the
research on database benchmarking, new design practices have emerged.

In a business context, benchmarking is usually used to compare a processes to one
similar within the own company or a rivalry business. When benchmarking software

16 Chapter 3. Theoretical Framework

systems, a company often wants to know what technology provides the best perfor-
mance to cost payoff for supporting their current business processes. It is therefore of
importance that the benchmark can be tweaked to imitate these real-world business
process as closely as possible.

One important part of database benchmarking is the benchmark dataset. Benchmark
datasets are datasets designed for use in database benchmarking and have specific
properties that distinguish them from ordinary datasets. They should contain large
volumes of data, reference data should be available, and they should be free to access
[16]. However, as there are many different specific application domains, it could be
challenging to find a benchmark dataset fit for the purpose of the technology to be
benchmarked. One alternative to finding a real-world dataset would be to syntheti-
cally generate data. Although synthetic data could never capture the diversity of real
data, it does bring advantages. Synthetically generated data is always available, gives
full experimental control and never infringes copyrightedmaterial or privacy sensitive
information [29]. A combination of both could also be used, where additional syn-
thetic data can be generated from the real-world dataset. In this way, additional data
could be created to increase the dataset size, or a full new privacy respecting dataset
can be generated that follows the patterns in the original dataset.

Apart from the data itself, there are other properties of a dataset that should be consid-
eredwhen designing a benchmark. To allow for scalability of the benchmark, it should
be possible to scale the dataset of the benchmark [26]. To also ensure reproducibility
when scaling the dataset, it should be indicated how the dataset must be scaled when
running experiments. Other factors that should be adaptable by the user are whether
to allow for data partitioning, indexing, redundancy and data reorganisation [26].

In database benchmarking, queries to test the system should also be provided. For
this, it is important to know the selected dataset throughout. Only then, the queries of
the benchmark can be formulated. These queries should provide full coverage of the
different types of operations supported by the system and should be a realistic repre-
sentation of the real-world environment the system will be deployed in [26]. These
operations should include selections, projections, joins, sorting and aggregation. The
queries should vary between specific queries, targeting a part of the database, and
broad queries, targeting the database as a whole.

When designing the set of queries, the accompanying metrics should also be consid-
ered. As with the queries, the metrics should also provide a complete picture of the
system. Choosing the wrong metrics can give a wrong impression of the system, mak-
ing the benchmark ineffective [26]. Choosing a wide range of metrics is thus of im-
portance. As one system might perform well on a specific task, but poor on another,
it would provide a skewed view of its performance if only one task was measured [35].
Commonmetrics in database benchmarking are load time, size of the dataset, query re-
sponse time, throughput rates, prize of computing hardware and power consumption.
Normalized metrics include price per throughput and power per throughput [26].

When benchmarking database management systems, new areas of concern arise. For
example, a database technology may or may not comply to the ACID properties and
the benchmark may or may not cover this as being an important aspect. A benchmark

3.3. Fairness 17

could also choose to assume such properties are present and provide the dataset and
queries with that in mind.

Database benchmarking is in many aspects similar to other areas of benchmarking,
but it does require its own focus. With database benchmarking there is a special in-
terest for the benchmarking dataset and the accompanying queries and metrics. As
database benchmarking often does not take place in a set business environment, ad-
ditional care is required to ensure that the benchmark is as true to the business as
possible. Other aspects, such as the importance of ACID compliance, should also be
included.

3.3. Fairness
When designing the benchmark, one thing that should be kept in mind is fairness.
When comparing two different database technologies with the same benchmark, both
technologies should be treated in the way that is optimal and fit for their purpose.
Although it is not the main task of a benchmark to stress this importance, it is best to
indicate the ways in which the benchmark can be altered to fit the technology that is
being put to the test.

The importance of fairness has been mentioned in several research papers [21, 26,
40, 46], where the papers of Hohenstein and Jergler [41] and Raasveldt et al. [68]
analysed this aspect of benchmarking specifically. Both conducted their study on the
fairness of comparing technologies using benchmark tests and found that promoters
of new technologies often predicate that their systems outperform current standards.
However, the tests performed to get those results were often not fair and favoured
the novel technology. To not get trapped in the same pitfalls, special attention will be
paid to making this benchmark and the tests that will be performed with it as fair as
possible. In [41] and [68], the following aspects are presented that must be avoided
in a performance comparisons:

1. Scope of comparison. You should always compare one specific system to an-
other. Comparing one new technology to the class of older technologies creates
invalid conclusions;

2. Using a small test data set. When running tests with a small dataset, the execu-
tion time ismostly dependent on the in-memory capabilities of a system, instead
of the technology;

3. Test with a warm start. Most real-world applications use a wide range of data,
making that the cache is continuously replaced with different data. Running
queries on the same small set of datamultiple times improves the execution time
and provides a wrong impression of the tested technology;

4. Using standard configurations. A DBMS has many configurations that can be
tuned to optimize the performance of a system. When benchmarking the tradi-
tional database technologies, often standard configurations are used. This can
heavily influence the performance of the tested technologies;

5. Over-tuning the system. Configurations of a system could also be used to op-
timize the system specifically for the few scenarios that the benchmark covers.

18 Chapter 3. Theoretical Framework

When using such a system in a real-world scenario the promised execution times
will then never be reached;

6. Using artificial test scenarios. Artificial test scenarios are abstractions of the re-
ality and often use a configurable number of nodes and relationships. Although
this makes testing easier, they do not provide a proper representation of their
real-world strain. Additionally, these tests rarely consider concurrent execution
of various query types as is often the case in real-world applications;

7. Not using a system’s full potential. In most database management systems, fea-
tures are available to improve the performance of the system, such as stored pro-
cedures. Ignoring these features and only using standard SQL does not provide
a realistic image of the performance;

8. Data distribution. When dealing with big data, the data distribution might im-
pact the performance. This happens especially when a different start node is
chosen by each system to evaluate the query;

9. Perform biased evaluation. As a benchmark test comprises of a combination of
different results, these need to be aggregated to get a global picture of the per-
formance. By interpreting the results in the right way, a system with an average
performance could have a seemingly better performance;

10. Non-reproducibility. The possibility to reproduce experiments is a key element
of scientific verification. When the benchmark experiments cannot be repro-
duced, the results cannot be verified and thus cannot be trusted;

11. Incorrect code. When testing a new system, bugs in the code might positively
influence the performance of the system. When the produced results are not
properly checked, it might be that the bug caused the query to skip parts of the
data, resulting in a faster execution time.

When designing a benchmark, the importance of the above points should be empha-
sized and compliance with them should be included in the design as much as possible.
Knowing that a benchmark is designed with fairness in mind creates trust in the pro-
duced results.

4
Methodology

In this chapter, the methodology used in this research is provided. The methods are
discussed for designing the benchmark, selecting the dataset, performing probabilistic
product matching and executing the benchmark.

4.1. Designing the Benchmark
For the main part of this research, the design of the benchmark is established. The
benchmark has been designed following the principles of design science. Within this
design process, special attention was put towards incorporating the benchmark prin-
ciples presented in Section 3. The final benchmark design is presented in Section 5.

From the book of [95] and the paper of [66], the following definition of design science
is provided in the context of this paper:

• Design science: The design and investigation of artifacts to serve human pur-
pose in the context of the research field.

In the case of this research, the context is the use of probabilistic databases with real-
world product matching data. Although design science was initially not developed for
use with information system design, the general acceptance and the research towards
a fitting framework has increased [36]. This results in a framework fit to solve prob-
lems at the intersection of business and IT [66]. Design science research was initially
developed for large multi-paper research [36]. For this research, an adapted version
was used for smaller research.

The approach used in this paper is based on the standard design science methodology
as described in [36], [66] and [95]. As no consensus has yet been reached on an exact
methodology, phases were used as a guideline and adapted where it seemed fit. The
phases that were followed are:

1. Problem identification and motivation. The problem to be solved is identified
and the value to find a solution is justified;

2. Define solution objectives. The solution objectives are derived from the problem
definition and should be formulated from what is expected to be possible and

19

20 Chapter 4. Methodology

feasible;

3. Design and development. The proposed solution is designed. The research ob-
jectives are captured in this design;

4. Demonstration. The created design is demonstrated to show how it solves one
or multiple of the identified problems;

5. Evaluation. The results produced by the created design are observed and mea-
sured. This can both be done individually, or in comparison to other designs.
Knowledge of relevant metrics and analysis techniques is required in this phase;

6. Communication. The created design and the problem it solves are communi-
cated. The novelty, utility and effectiveness of the design are also described.

4.2. Dataset Selection
In order to design a benchmark representative of real-world scenarios and strain, a
rich and fitting dataset should be used. In this section, the requirements for selecting
a dataset are shown. A selection of datasets were evaluated to these requirements and
the dataset deemedmost fit was selected. An elaboration on the chosen dataset is pro-
vided. Additional details on the dataset can be found in Section 5.2 and Appendix B.

As the goal of this research is to design a benchmark for probabilistic databases, a
suitable dataset should be found. For this research, a dataset with the following char-
acteristics is required:

1. The dataset is a good representation of the real world, both in the type of data
and in size.

2. The dataset contains enough uncertainty to be suitable for data integration pur-
poses.

3. The dataset should be freely available.

4. The dataset should be versioned. Experiments conducted on the dataset should
be reproducible.

5. The dataset is suitable to be inserted in a relational database management sys-
tem.

To verify which datasets are commonly used for entity resolution, several researches
have been analysed. The datasets used in these researches can broadly be categorised
in two types: self-collected datasets, as used in [1, 2, 27, 52], and existing datasets, as
used in [57, 72, 96, 100].

Regarding the self-collected datasets, it was found that they are all on the small side.
Although all freely available, they only contain product data from up to two different
websites. Therefore, these datasets are not suitable for this research as they do not
meet requirement 1. It also shows that creating a dataset for the purpose of this re-
search is not feasible.

From the existing datasets, theWeb Data Commons dataset wasmost frequently used
[72, 96, 100]. Other datasets found in the selection of researches include the Yahoo’s

4.3. Product Matching 21

Gemini Product Ads dataset [72], UCI datasets [57], and the LEAPME-dataset [10].

When evaluating these datasets according to the listed requirements, the Yahoo
dataset and the LEAPME-dataset are not fit for this research. The Yahoo dataset does
not meet requirement 4, as the data can only be retrieved from the API, which always
retrieves the most current data. The LEAPME-dataset contains data on four different
product categories, which are cameras, headphones, phones and televisions. As all
products lie in either of these four product categories, this dataset is not very strong
for both requirements 1 and 2.

Both the Web Data Commons (WDC) dataset and several UCI datasets meet all re-
quirements. As the UCI datasets are focused on machine learning and the suitable
data sets are smaller than the WDC dataset, the WDC dataset is deemed superior to
the other datasets for this research. Datasets from Kaggle [45] were also evaluated,
but none were deemed more fit than the WDC dataset.

As the Web Data Commons dataset is provided with a clustering of the products, it is
interesting to see whether the probabilistic approach presented in this research will
show a clustering similar to that present in the dataset. The WDC Gold Standard also
aids this goal. For this standard, a set of 2200 pairs of offers were manually verified
whether they belonged to the same product or not [67]. This part of the dataset aided
as the ground truth for the machine learning steps taken next.

As it is not the goal of this research to provide a full overview of datasets suitable for
entity resolution research, and as no survey paper was found on this topic, we are
content with the use of the WDC dataset as it fully meets all requirements. Please
note that any other dataset that meets the requirements could have also been used for
this research.

4.3. Product Matching
As the area of product matching has been widely studied, this research made use of
techniques and approaches that have been described in these earlier researches. The
approach relevant to this research is described in this section.

In general, the process of product matching follows the following steps [58, 63, 72]:

1. Data Preparation. The data is standardised and cleaned. A uniform data struc-
ture is applied.

2. Search Space Reduction. Since the time needed for evaluating all possible com-
binations grows exponentially with the dataset size, the search space for possible
matches needs to be reduced to allow for efficient matching.

3. Attribute Value Matching. The similarity of the remaining data tuples is de-
termined using a syntactic and semantic means, which produces a comparison
vector per data attribute.

4. Classification. A decision model then determines the similarity score of a data
tuple. This score is compared to the set thresholds to determine whether it is a
matching tuple, possibly matching tuple, or non-matching tuple.

22 Chapter 4. Methodology

5. Verification. The performance of the applied product matching algorithm is ver-
ified using standard performance metrics.

To prepare the dataset that will be used for the benchmark, these steps were followed.
These steps are implemented in QuestionMark: The Dataset Generator [98] and can
be referenced for further details. The next part explains the product matching steps
that are implemented in this program in more detail.

Data Preparation. A standardised and cleaned version of the chosen dataset is
available for download. The quality of this dataset is deemed largely sufficient and no
attempt will be made to improve on this or replicate this. As the dataset comes with
a clustering, the cluster attribute was removed from each product record to obtain a
non-clustered list of product offers.

To allow for variation in the dataset size, a dataset resize function was implemented.
This function receives a percentage as an input and pseudo-randomly chooses offers
to include in the smaller dataset. For a specified percentage, the same dataset gets
returned every time to ensure reproducibility of the results in this research.

Search Space Reduction. To obtain a time-efficient product matching, the search
space formatching pairs should be reduced. Disregarding this step results in quadratic
time complexity during the product matching phase [52, 64]. Having 16 million prod-
ucts in the dataset, this step is thus essential for a time-efficient product matching.
For this step, filtering or blocking can be used. With blocking, all possible matches
are included in the same block and only products contained in the same block are
compared [49, 52]. With filtering, a list of possible matches is determined based on a
simple similarity measure and a corresponding threshold [64]. A combination of both
approaches could also be used.

The surveys of [52] and [64] give an overview of various Filtering techniques, Rule-
Based Blocking techniques and Machine Learning Based Blocking techniques. The
decision for the space reduction technique used in this research is based on these
surveys. Due to time restrictions, a selection of two Rule-Based Blocking techniques
was implemented on the dataset to verify which algorithm performed best. These are
Incrementally-Adaptive Sorted Neighborhood [97] and Improved Suffix Array Block-
ing [25]. The literature study showed that these two techniques provide the best per-
formance while still being simple. An implementation of the two blocking algorithms
and a performance evaluator was implemented to see which blocking algorithmwould
be used for this research.

Tests executed using the implemented performance evaluator indicate that Adaptive
Sorted Neighborhood is the best blocking algorithm for the dataset used in this re-
search. From the implementation, it is presumed that the Improved Suffix Array
blocking technique would perform better when processing complete data consisting
of small strings.

Following the method presented by Yan et al. [97], the blocking algoritm uses a slid-
ing window to roughly determine what offers are possible matches. For this, a sorted
dataset is required. During each iteration of the algoritm, a block is created. The slid-
ing window is placed at the first offer from the sorted list that is not yet in a block.

4.3. Product Matching 23

When the start of the window is set, the enlargement phase is entered. During this
phase, the window will iteratively increase in size. This is a fixed size. After each iter-
ation, the blocking algorithm determines the similarity score of the first and last offer
in the window. If the distance between the two offers is smaller than the set threshold,
the window is enlarged and a new similarity score is determined. If the distance is
higher, the retrenchment phase is entered. During the retrenchment phase, the slid-
ing window will decrease one offer in size and calculate the similarity score between
the first offer in the window and the new last offer. Once the similarity score rises
above the threshold, the block is created.

Attribute Value Matching. As with the search space reduction phase, this phase
has a range of implementation options. During this phase, either an algorithm based
approach or amachine learning based approach could be used [14, 17]. When product
matching with either approach, thematching can be performed only on the product ti-
tle or on all available information, i.e. including the product attributes [1]. Only using
the product title provides simplicity and speed, but at the cost of a lower precision.

As no survey papers were found that discuss this subject specifically, the paper of Bhat-
tacharya and Getoor [14] will be used as an implementation guide. From this paper,
the Attribute-Based Entity Resolution approach is used as the foundation of the im-
plementation. For this research, a comparison vector is generated from all attributes
of an offer. Within each block, all possible offer combinations are generated and the
distance between these offers is then provided by the vector. For simplicity, this vector
is combined to a single distance score. The weight of each attribute for this final score
is adaptable.

Classification. As the benchmark designed in this research is based on probabilistic
data, an additional layer needs to be build on top of the basic algorithm to include a
probabilistic model in the final clustering. This implementation will be based on the
papers of Panse et al. [62] and Elmagrmid et al. [28].

The creation of the various probabilistic clusters is based on the possible worldsmodel
as presented in [62]. For each block, a matching graph is created and the matching
score of each edge is evaluated. Blocks containing only a single offer are always true,
thus they are submitted to a cluster directly. When a block contains multiple offers,
their matching score is evaluated. Here exists three possibilities:

1. the matching score of their edges all lie above the upper threshold;

2. the matching score of their edges all lie below the lower threshold;

3. there are one or multiple edges between the two thresholds.

In the first case, the cluster is certain; there is only one possible world. In this case
the full block becomes a new cluster. There does exist uncertainty between the cor-
rect value of the attributes, as these are likely different. In the second case, the cluster
is also certain, as all offers are certainly different. In this case, each offer is put in a
separate cluster. In the final case, world graphs should be constructed of the possible
worlds. The amount of possible worlds created equals 2n where n equals the amount
of offers connected by an uncertain edge. When these world graphs are created, the
inconsistent worlds are removed and the remaining worlds are included as different

24 Chapter 4. Methodology

options for the same cluster. If an offer is certainly present in all worlds, this offer
is added later to all generated world graphs. If an offer is certainly not present in all
worlds, a separate cluster is created. In these clusters, there exists two kinds of uncer-
tainty. The first kind is the uncertainmatching of product offers, which is represented
as the probability of the possible world. The second kind is the uncertainty regarding
the attribute values of the offers. Both are of importance when working with the prob-
abilistic database.

Uncertainties within a possible world are expressed using probabilities. These proba-
bilities are expressed as values on the unit interval. The probability of correctness of
the attribute values of a specific offer within a specific possible world is calculated us-
ing the distance measure. For possible worlds with three or more offers, the distance
score between the offers is used as a likelihood that the offer has the correct attribute
values. When one offer lies closer to all other offers in the cluster, it is likely that
it carries the correct information. An offer that lies far from all others likely carries
incorrect or incomplete information. For possible worlds containing only two offers,
each offer is given the attribute probability of 50%. Regarding the probability of the
possible world itself, also the method described by [62] is followed. The probability of
a possible world is obtained by the weight of the edges and absence of edges in a pos-
sible world. These weights are again determined by the offer distance. Inconsistent
worlds are then removed, and the probability of the remaining worlds are normalized.

For the creation of the possible worlds, a naive implementation is used based on the
theory presented in this paper. Because of that, the space complexity for the creation
of the possible worlds is factorial. This imposes a limit on the block size that can be
digested by this algorithm. For this research, this limit is set on a maximum of six
offers per block.

Verification. To verify the performance of the blocking and matching algorithms,
performance evaluators were implemented. To provide information on the perfor-
mance, the Gold Standard of the WDC dataset is used. As the structure of this dataset
deviates from that of the Offer Corpus dataset, first a transformation on the structure
is performed. Additionally, the labels present in the dataset were extracted to test the
performance with.

For measuring the performance of the blocking algorithm, the standard performance
metrics recall, precision and runtime were used. For the matching algorithm, prob-
abilistic performance measures were used. As the data produced by the matching al-
gorithm is uncertain, standard performance measures will fail to provide a correct
representation of the performance. Hence, a selection of the performance measures
from [87] was selected. From this paper, the expected precision and expected recall
is used, as well as the runtime. In this context, expected recall is defined as the prob-
ability mass of the correct answers with respect to the maximum number of correct
answers possible. Expected precision is defined as the ratio of probability mass of the
correct answers with respect to the probability mass of the complete result set.

For both the blocking andmatching algorithm, the results of a selection of tests can be
found at Appendix C. These results can act as a guide when selecting the parameters
and algorithms during benchmarking, to obtain a dataset with the desired uncertainty

4.4. Query Selection 25

and error-rate.

4.4. Query Selection
To obtain a complete and fair set of queries a query selection process was applied. To
ensure that the final set of queries does not favour one probabilistic DBMS over the
other, queries were designed from the possibilities of the dataset and from the range
of operations supported by PostgreSQL.

To obtain a representative set of queries, first the dataset was analysed to verify what
useful information could be extracted from the data. The datasetwas approached from
different business processes for which the dataset could be used. From these business
cases, query types were defined. Next, the formulated set of queries was related to
the set of operations supported by MayBMS and DuBio. Earlier research on database
benchmarking and probabilistic databases was also consulted to obtain useful query
types. From the defined query types, the literature study and the supported functional-
ity analysis, a comprehensive set of queries was defined. Finally, this set was reduced
to obtain a well balanced set of queries where each functionality is represented equally
well.

During benchmark testing, it was discovered that some queries did not provide the
insights that were expected of them. This feedback was also used to finalize the set of
queries as presented in this paper.

4.5. Metric Selection
The metrics that are included in the benchmark are obtained by a combination of lit-
erature research and dataset analysis. Information from Section 3.2 was used as a
guide for the collection of metrics. The possibilities of the dataset were evaluated af-
terwards to obtain an even more complete set of metrics. Only metrics were included
that were deemed useful for the evaluation of a DBMS. Therefore, metrics as power
consumption are left out. For the metric of user friendliness, additional literature was
consulted. Inspiration for statements was drawn from [38] and [39]. The scoring
system is based on the Likert scale [53]. A five-point Likert scale is used.

4.6. Executing the Benchmark
To verify the validity of the designed benchmark, it was put to the test with the proba-
bilistic database management systems DuBio and MayBMS. Running the benchmark
test on both these systems also provided information on their performance. This con-
tributed to the second goal of this research; providing information on the performance
of the tested systems in the context of product matching.

To properly benchmark both systems, a case study was designed. An imaginary busi-
ness was set up and their requirements and wishes for a probabilistic DBMS were
determined. During the benchmarking process, the steps in the manual were directly
followed. The results of the benchmarking process are also reflecting the requirements
of that business.

26 Chapter 4. Methodology

For each technology, the same benchmarking process was applied. The designed
benchmark was used to benchmark each technology separately. The SQL pseudocode
was translated to the corresponding dialect and the parameters were adapted to best
fit the system being tested. Each system was deployed in a separate Docker container,
all run on the same hardware. The hardware is a single machine with AMD Ryzen 5
PRO 6650U CPU @ 2.90 GHz, quad core, 16 GB RAM, and 512 GB SSD PCIe Gen4.
Best efforts were made to make the benchmarking process as fair as possible.

The data collection in this second part of the research is of a quantitative nature. The
results are obtained by running the benchmark designed in this research on each of
the technologies.

The produced results have been analysed following the method described in the user
manual of the designed benchmark, of Appendix A. The parameters used for testing
and the results produced are presented in Section 6.1.

4.7. User Testing
To verify the usability of the designed benchmark, user testing was applied. The user
study was performed individually and consisted of a formal experiment and an inter-
view. The design of this user study has been approved by the Computer & Information
Sciences Ethics Committee of the University of Twente [84].

For this study, research participants were selected who did not have a thorough under-
standing of probabilistic database technology and benchmarking. According to [12]
and [32], more problems get identified by users who have no expert understanding.
The participants of this research had to have a good understanding of English and had
be proficient with Python. Fitting subjects were asked to participate, so no random
selection was used. A total of six subjects participated in this research. From these,
five were male and one was female. The participants were between 19 and 26 years
old. Participants are following or have completed a University Bachelors or Masters
degree in the areas of Computer Science, Electrical Engineering, AppliedMathematics
or Interaction Technology.

Before participation to the research, all participants were informed on the purpose of
this research and of the possible risks, bothwritten and verbally. The formprovided to
the participants can be found in Appendix D.1. The users were asked for their consent
also both written and verbally.

The first part of the user study consisted of a formal experiment. After the consent
was collected, participants were informed on the setup of this experiment. It was ex-
plained to the participants that they should imagine that they work in a company as
a database administrator and that their manager got instructed to explore the possi-
bilities of implementing probabilistic database technology in the company. Therefore,
the manager instructed the team to run a benchmark test on the selected probabilistic
database management system using QuestionMark. Their manager left themwith the
webpage of the benchmark and informed them that the system administrators already
set up a working connection to the probabilistic DBMS.

Starting the experiment, the participantswere asked to download the benchmark from

4.7. User Testing 27

GitLab and fully run it. The exact instructions provided to them can be found in Ap-
pendix D.2. During this experiment, the researcher remained in the same room as
the participants. Participants were allowed to ask questions and were encouraged to
share their thoughts.

During the formal experiment, most attention was paid to the rule-based level of per-
formance of the participants. With the rule-based level of performance, errors often
correspond to omitting steps in the procedure, either due to participants missing ver-
bal or non-verbal cues about critical steps in this procedure. Problems on this level
are caused by issues in cuing, or consistency of the software [32]. On this level, the
ergonomic quality of the software could best be tested. The ergonomic quality is re-
lated to the usability of the software in terms of its simplicity, controllability and pre-
dictability [39]. Finally, most usability problems are discovered when combining both
usability testing and heuristic evaluation [32]. Therefore, during user testing, special
attention was paid to the ten heuristics of Nielson-Molich [60]:

• Keep users informed about its status.
• Show information in ways users understand.
• Offer users control.
• Offer consistence in interface.
• Prevent errors.
• Have visible information and instructions to let users recognize options and ac-
tions.

• Be flexible so experienced users can reach the goal faster.
• Have no clutter.
• Provide plain-language help.
• List concise steps in clear documentation.

After the participant has fully completed the benchmark process, an interview was
conducted. The following questions were asked to the participants:

1. What do you think?

2. How would you rate the user manual provided with the benchmark? Did you
have trouble understanding specific steps? Were steps missing?

3. How do you rate the user-friendliness? Was it easy or difficult to use?

4. Howwould you rate your ownPython level? Was that sufficient to run the bench-
mark?

5. How much previous knowledge on benchmarking and (probabilistic) database
technology do you have?

6. Can you understand the provided results?

7. Do you have any further suggestions for improvement?

8. Anything else you would like to add?

These questions were collected by using insights from [75], [79] and [81]. The inter-
view questions were mostly open-ended to allow for follow-up questions and encour-
age additional explanation by the participant.

28 Chapter 4. Methodology

The results of this study were used to iterate on the design of the benchmark. These
results can be found in Section 6.2.

5
Benchmark

In this chapter, the probabilistic benchmark design will be presented. This section
touches upon the final design decisions, provides the queries that are included in the
benchmark and explains how the benchmark can be adapted to approach the load of
the real-world applications. This section provides the required knowledge about the
benchmark and provides a guide how the benchmark should be used. The benchmark
manual can be found at Appendix A.

5.1. The QuestionMark Benchmark
The benchmark presented in this thesis is called QuestionMark. The QuestionMark
benchmark for probabilistic databases is a benchmark system is composed of two
Python programs that both need to be executed for using the benchmark. In short,
the two programs are:

• QuestionMark: The Dataset Generator. This program generates the dataset
required for running the actual benchmark. By tweaking the parameters in this
program, a dataset can be generated that approaches any real-world scenario as
closely as possible. This Python program can be downloaded from GitLab [98].

• QuestionMark: The Probabilistic Benchmark. This program can run the prob-
abilistic benchmark presented in this research. The program can be adapted
to benchmark any probabilistic DBMS. This Python program can also be down-
loaded from GitLab [99].

As there is no standard available for benchmarking probabilistic databases, this re-
search aimed to deliver a benchmark that covers a wide range of aspects of the tested
probabilistic DBMS. The design of this benchmark is based on the foundations pre-
sented in Section 3 and designed following the principles of design science. This
benchmark provides a convenient way to test various probabilistic database manage-
ment systems and get insights on their performance. Since the queries provided in
this benchmark are written in a pseudocode like language, queries can easily be trans-
lated to any probabilistic dialect. Additionally, it provides clear guidance on how the
parameters can be adapted to approach any real-world application as close as possible.

29

30 Chapter 5. Benchmark

The processes performed by both programs are visually displayed in figures 5.1 and
5.2. These figures are based on the UMLActivity Diagram. In these figures, an orange
coloured box indicates that the process requires human action. All white boxes are
thus performed automatically.

Figure 5.1: The processes performed
by QuestionMark: The Dataset

Generator

Figure 5.2: The processes performed
by QuestionMark: The Probabilistic

Benchmark

5.2. Dataset
This benchmark uses an adaptation of the WDC Product Data Corpus and Gold Stan-
dard for Large-Scale ProductMatching, Version 2.0 [93] as the dataset. From this data
corpus, the normalised English offers dataset is adapted and used for this benchmark.

TheWDCdataset is a large public training dataset for productmatching. It is produced
by extracting schema.org product descriptions from 79 thousand websites, which pro-
vides 26 million product offers. The English offers subset consists of 16 million prod-
uct offers [67]. The dataset is provided with a clustering. The 16million product offers
in the English subset are categorized in 10 million clusters. Each cluster contains of-
fers of the same product found on different websites. There are roughly 8.5 million
clusters with size 1, one million clusters with size 2, and 400.000 clusters with size
3 or 4. Clusters of a size greater than 80 are filtered out of the dataset, as these are
likely noise [67]. Within the English offers dataset, each offer is represented as a JSON
object. An example offer can be found in Appendix B.2.

To obtain a dataset suited for use in this benchmark, the English offers subset from
the WDC data corpus is adapted. The dataset was adapted to include a probabilistic
clustering. The methodology used for this can be found in sections 4.2 and 4.3.

The final dataset structure obtained is shown in Figure 5.3 for DuBio and in Figure 5.4
for MayBMS.

5.3. Parameter Tuning 31

Figure 5.3: The dataset structure in DuBio

Figure 5.4: The dataset
structure in MayBMS

5.3. Parameter Tuning
The benchmark is developed to support a wide range of strain levels. Both Python pro-
grams contain parameters that should be tweaked before running. During the dataset
generation phase, there aremultiple parameters that can be tweaked to change the size
and uncertainty of the dataset. These parameters should be tweaked to represent the
real-world data as closely as possible. During the benchmarking, parameters can be
tweaked to alter the coverage of queries and change the behaviour of the benchmark-
ing. The following parameters are present in QuestionMark: The Dataset Generator:

• DBMS. Determines into which database management system the generated
dataset should be loaded and what preparatory queries need to be run.

• Dataset size. Determines the amount of offers included in the dataset. A percent-
age of the dataset can be determinedwith up to twodecimal places. The offers for
the new smaller dataset are pseudo-randomly chosen, so that the same dataset
is returned for multiple runs. This ensures reproducibility of the results. The
full dataset contains 16 451 499 offers. The smallest dataset that can be gener-
ated is 0.01% of the full dataset, which produces an initial dataset of 1653 offers.
The final probabilistic dataset that is generated from these offers contains 11 807
records. This value should be carefully chosen, as this influences to what extent
the produced dataset imitates the data being digested by the real-world applica-
tion.

• Whole clusters. Determines whether the offers chosen from the larger dataset

32 Chapter 5. Benchmark

to include in the new smaller dataset are pulled from entire clusters or not. In-
cluding entire clusters increases the uncertainty of the data.

• Word distancemeasure. Determines theway the distance between twowords or
sentences is calculated. This measure is used during the blocking phase on the
attributes determined as Blocking Key Values and on all suitable attributes dur-
ing the matching phase. The implemented distance measures are Levenshtein,
Jaro, Jaro-Winkler, Hamming and Jaccard.

• Blocking key values. Determines the attributes that are included to determine
the similarity of two offers during the blocking phase. Includingmore attributes
provides a better blocking performance, but at the cost of a higher run time.

• Blocking similarity threshold. Value between 0 and 1 that represents the dis-
tance between two offers. Evaluated offers with a distance lower than the thresh-
old are included in the same block.

• Blocking window size. Determines the size of the sliding window. Within a
window, the distance between the first and last offer is determined. This value
influences the run time.

• Maximum block size. Poses a restriction on the block size. Increasing this value
improves the performance. As the matching phase includes a calculation with
factorial time complexity, this size should not exceed seven. Six is advised.

• Matching attributes. Determines the attributes that are used to determine the
distance between two offers during the matching phase. Including more at-
tributes improves the performance, but increases the run time.

• Matching attribute weights. Determines the weight of each attribute to calcu-
late the final distance score. This can be tweaked to improve the performance.
It has no effect on the run time.

• Upper phi and Lower phi. Determines the upper and lower threshold of the dis-
tance measure. If the distance between two offers is greater than the upper phi,
the two offers are certainly not the same product. If the distance is smaller than
the lower phi, the two offers are certainly the same. Increasing the gap between
the values ensures less false matches or non-matches, but increases the compu-
tational complexity in later phases and during querying. A smaller gap can be
used to artificially reduce the uncertainty in the dataset. This value should be
carefully chosen, as this influences to what extent the produced dataset imitates
the data being digested by the real-world application.

The following parameters are present inQuestionMark: The Probabilistic Benchmark:

• DBMS. Determines the Database Management System that will be used for the
execution of the benchmark. Additional systems can be added when support for
them is also added to the benchmark program.

• Iterations. Denotes the amount of times a query is run to obtain a runtime av-
erage from the queries. This is a global variable that is used for all queries. In-
creasing this number will provide a more precise outcome of the average run

5.4. Queries 33

time, but at the cost of a longer benchmark execution time. The total amount of
iterations is always +1 to create a warm start.

• Show Query Plan. Boolean value. If true, the query plan for each query is also
provided with the benchmark result. Enabling this variable does not influence
the execution time of the queries.

• Timeout. Ensures that queries that take too long to return an answer will be
aborted. Once a query times out, the benchmark run will be quit and an error
message will be displayed.

• Queries. A list that contains all queries from the benchmark. Depending on
the goal with which the benchmark is run, queries that are not relevant can be
removed from the benchmark run. Removing queries lowers the total time re-
quired to run the benchmark.

5.4. Queries
This benchmark offers a total of eighteen queries. These are a range of queries that
can be used to test various types of systems. These queries cover a wide range of func-
tionalities. Queries for the benchmark are divided into three categories:

• Queries providing insights into the dataset.

• Queries that perform probabilistic operations on the dataset.

• Queries that insert, update or delete records or uncertainty.

In the benchmark, a distinction is made between native support of a function or the
possibility to include the function, for example by using a workaround method. Ta-
ble 5.1 lists the functionalities covered by the benchmark test and the queries that test
for that support. The twelfth functionality regarding the anomalies is included as an
addendum for functionalities that are not listed, but turn out to either be lacking from
the tested system or be included.

Functionality Queries
1 Support ofmost recent deterministic DBMS queries Any
2 Offering a compact representation of the present un-

certainty
Insight 2

3 Get the probability of an offer Probabilistic 1
4 Get the probability of a composed result Insight 5; Insight 6;

Probabilistic 4
5 Apply aggregate functions on probabilities Insight 4; Probabilistic 4
6 Filtering on probability Probabilistic 6
7 Get the expected count Probabilistic 2
8 Get the expected sum Probabilistic 3
9 Get the most probable answer Probabilistic 5
10 Verify if a specific possible world exists Insight 5
11 Verify if a record is certain Insight 4

34 Chapter 5. Benchmark

12 Updating the uncertainty of an offer Insert, Update, Delete 3
13 Repair the probability space after addition, update or

deletion of offers
Insert, Update, Delete 1;
Insert, Update, Delete 4

14 Any anomalies discovered during benchmarking Any

Table 5.1: Functionalities and Query Support.

For each functionality, a selection of queries is offered that can be selected and run
separately. This provides two benefits. First, the wide range of queries ensures that
there are always some queries that represent the load of the real-world application for
which the benchmark is run. Second, this ensures that only the queries that represent
the load of the real-world application need to be run, thus saving time.

The queries for this benchmark are provided in a pseudocode like SQL-dialect. Since
the different probabilistic databases have distinctive specialised dialects, a generic lan-
guage provides convenience to translate to the desired dialect. To serve research pur-
poses, the pseudocode queries have been translated to the dialects of MayBMS and
DuBio. The queries included in the benchmark are listed below. The translation of
these queries in both dialects can be found in Appendix A.7.

The queries below are included in the benchmark. For each query, additional infor-
mation is provided on its functioning and why it is included in the benchmark.

Test 1: Testing the connection. The first query is mainly included to have a low
strain query that can be used to test the connection. This query consists of basic SQL-
functionalities and all systems should be able to run this.

01 | select attribute 'id'
02 | from entity 'offers'
03 | return the first 10 records;

Insight 1: Retrieve the full dataset, gain insight in data structure. This query is a
real strain tester of the system. The query itself is simple, but it requires the DBMS to
return all its data.

01 | select all attributes
02 | from 'offers';
03 |
04 | if present select all remaining data;

Insight 2: Provide insight into the concentration of offers. This query can be used
to verify to what extent the DBMS can concentrate the uncertainty of an offer. It also
provides insights into the number of clusters that have been formed.

01 | select the count of all attributes alias 'records',
↪→ the count of all distinct values of attribute 'id' alias 'offers',
↪→ the count of all distinct values of attribute 'cluster_id' alias '
↪→ clusters'

02 | from entity 'offers';

Insight 3: Provide insight into the distribution of cluster volumes. This query is in-
cluded as lower strain deterministic query and also includes useful insight into the

5.4. Queries 35

dataset. As larger clusters put more strain on probability calculations, it is useful to
gain insight into the distribution of cluster volumes.

01 | select attribute 'cluster_size',
↪→ the count of all values of attribute 'cluster_size' alias 'amount'

02 | from subquery (
03 | select the count of all distinct values of attribute 'id' alias '

↪→ cluster_size'
04 | from entity 'offers'
05 | grouped by attribute 'cluster_id'
06 |) alias 'cluster_sizes'
07 | grouped by attribute 'cluster_size'
08 | ascendingly ordered by 'cluster_size';

Insight 4: Gets the percentage of certain clusters. This query provides insight into
the uncertainty of the generated dataset. A new dataset can be generated when the
result of this query does not match the uncertainty of the real-world dataset. It also
verifies if probability calculations can be done on aggregated data.

01 | select the count of all certain records divided by the count of all
↪→ attributes times 100 rounded to four decimal places alias 'certain
↪→ percentage'

02 | from entity offers;

Insight 5: Get the id and probability of the offers from a specific possible world. In
some situations it might turn out useful to make a selection based on the probabil-
ity space of a record. This query returns any record satisfying a specific sentence or
probability space declaration.

01 | select attribute 'id',
↪→ the probability attribute ,
↪→ the variable or sentence attribute

02 | from entity 'offers'
03 | satisfying a specific variable or sentence statement;

Insight 6: Get the average probability of the dataset. This is another query that tests
the strain of the system. It performs a probability calculation over the entire dataset.
It also provides insights into the uncertainty of the dataset.

01 | select the average of the probability attribute rounded to four decimal
↪→ places alias 'certainty_of_the_dataset'

02 | from entity 'offers';

Probabilistic 1: Get offers with the probability of their occurrence. This query con-
tains the most basic added functionality of any probabilistic DBMS, which is the pre-
sentation of the probability. It also evaluates the speed of ordering based on the prob-
ability attribute.

01 | select the probability attribute rounded to four decimal places alias '
↪→ probability',
↪→ all attributes

02 | from entity 'offers'
03 | descendingly ordered by 'probability';

36 Chapter 5. Benchmark

Probabilistic 2: Gets the expected count of the categories. One more advanced oper-
ation on probabilistic data is to obtain the expected count of an attribute. This query
evaluates if that operation is supported.

01 | select the attribute 'category',
↪→ the expected count per attribute 'category' alias 'expected_count'

02 | from entity 'offers'
03 | grouped by attribute 'category'
04 | descendingly ordered by 'expected_count';

Probabilistic 3: Gets the expected sum of the product ids per cluster. Another closely
related operation is the expected sum. This query evaluates if that operation is sup-
ported.

01 | select attribute 'cluster_id',
↪→ the expected sum per attribute 'id' alias 'number_of_offers'

02 | from entity 'offers'
03 | grouped by attribute 'cluster_id'
04 | descendingly ordered by 'number_of_offers';

Probablistic 4: Gets the variables/sentence and probability for the categories. This
query is again focused on strain testing. This query produces large aggregations of
probabilities, which need to be evaluated to return the query result. This query tests
if the DBMS can digest these large aggregations.

01 | select attribute 'category',
↪→ the compound variable/sentence attribute ,
↪→ the compound probability attribute rounded to four demical places
↪→ alias 'probability'

02 | from entity 'offers'
03 | grouped by attribute 'category'
04 | descendingly ordered by 'probability';

Probabilistic 5: Returns the most probable offer that is related to a specified string.
This query represents the behaviour of a search engine, where the most probable offer
satisfying a search condition should be returned. An example string is ’card’. The pseu-
docode provided contains a workaround method to obtain the most probable answer.
It can be shortened to represent native support of this functionality. This query con-
tains hard-coded information in the translation and may require an adaptation when
having generated a fitting dataset. See Section 5.4.1 for more information.

01 | select all attributes ,
↪→ the probability attribute rounded to four decimal places alias '
↪→ probability'

02 | from entity 'offers'
03 | satisfying that the attribute value 'cluster_id' exists in subquery (
04 | select attribute 'cluster_id'
05 | from entity 'offers'
06 | satisfying that attribute 'title' contains a specified string
07 | or that attribute 'description' contains a specified

↪→ string
08 |)
09 | descindingly ordered by 'probability'
10 | return the first 1 records;

5.4. Queries 37

Probabilistic 6: Returns all offers containing a specified string with a high uncer-
tainty. When a dataset contains large volumes of highly uncertain data, it can be
useful to let a selection of data pass human inspection. This query returns the most
uncertain offers so these can be manually classified. This query contains hard-coded
information in the translation and may require an adaptation when having generated
a fitting dataset. See Section 5.4.1 for more information.

01 | select attribute 'id',
↪→ attribute 'cluster_id',
↪→ attribute 'brand',
↪→ attribute 'category',
↪→ attribute 'identifiers'

02 | from entity 'offers'
03 | satisfying that attribute 'title' contains a specified string
04 | or that attribute 'description' contains a specified string
05 | and the value of the probability attribute is higher than 0.45
06 | and the value of the probability attribute is lower than 0.55;

Insert, Update, Delete 1: Inserting a new probabilistic cluster. When dealing with
probabilistic databases, new data can be added regularly. This query verifies the speed
at which new clusters can be added to the database.

01 | insert into entity 'offers'
02 | the values (a copy of a cluster with size 5, with negative id values.);
03 |
04 | if required add the new probabilities to the corresponding entity;
05 | if required manually repair the probability space;

Insert, Update, Delete 2: Inserting bulk. When large volumes of data are constantly
added to the database, they are likely added in bulk. This query strain tests the DBMS
on large additions of probabilistic data. The current table ‘bulk insert’ contains 1000
offers and their corresponding probabilities.

01 | insert into entity 'offers'
02 | the results of subquery (
03 | select all attributes
04 | from entity 'bulk_insert'
05 |);
06 |
07 | if required add the new probabilities to the corresponding entity;
08 | if required manually repair the probability space;

Insert, Update, Delete 3: Update uncertainty. This query updates the uncertainty
of a specific cluster. As the location of the probability greatly determines the form
of this query, its pseudocode is more abstract. This query contains hard-coded infor-
mation and may require an adaptation when having generated a fitting dataset. See
Section 5.4.1 for more information.

01 | update the entity containing the probabilities.
02 | alter half of the probabilities of a cluster with four offers;
03 |
04 | if required manually repair the probability space;

38 Chapter 5. Benchmark

Insert, Update, Delete 4: Remove uncertainty. Whenworking with probabilistic data,
chances are that new evidence will be found and the database should be updated ac-
cordingly. In this query, a cluster of size four will be split into three clusters. The
translation of this query contains hard-coded information andmay require an adapta-
tion when having generated a fitting dataset. See Section 5.4.1 for more information.

01 | update entity 'offers'
02 | set attribute 'cluster_id' with the maximum value of attribute 'cluster_id

↪→ ' + 1,
03 | the variable/sentence/probability attribute to certain
04 | satisfying that attribute 'id' has the value of the first offer in the

↪→ cluster;
05 |
06 | update entity 'offers'
07 | set attribute 'cluster_id' with the maximum value of attribute 'cluster_id

↪→ ' + 1,
08 | the variable/sentence/probability attribute to certain
09 | satisfying that attribute 'id' has the value of the third offer in the

↪→ cluster;
10 |
11 | update entity 'offers'
12 | set the variable/sentence/probability attribute to a new normalized value
13 | satisfying that attribute 'id' has the value of the second offer in the

↪→ cluster;
14 |
15 | update entity 'offers'
16 | set the variable/sentence/probability attribute to a new normalized value
17 | satisfying that attribute 'id' has the value of the fourth offer in the

↪→ cluster;
18 |
19 | if required update the probabilities in the corresponding entity
20 | if required update the probability space;

Insert, Update, Delete 5: Delete a full cluster. Any probabilistic data should also not
slow down the deletion of data significantly. This query tests the speed of the DBMS
when deleting probabilistic data. This query should be run on a cluster with size four.
The implementation of this query contains hard-coded information and may require
an adaptation when having generated a fitting dataset. See Section 5.4.1 for more
information.

01 | delete all records from entity 'offers'
02 | satisfying that attribute 'cluster_id' has the value of the specified

↪→ cluster;
03 |
04 | if required delete the probabilities in the corresponding entity;
05 | if required manually repair the probability space;

5.4.1. Altering Queries
Some of the queries presented above contain variable values. As the offer included in
the dataset varies when a dataset is created with a different size, the values included
in the dialect translations can become incorrect. The instructions below explain how
each variable query should be adapted for use.

5.4. Queries 39

• Query insight 5. This query requires a specific variable or sentence to be defined.
You could either define one that does not exist in the database, or choose one that
does exist.

• Queries probabilistic 5 and probabilistic 6. This query uses pattern matching
to obtain a selection of offers that satisfy that pattern. It is advised to query for
anything that exists in the dataset.

• Query insert, update, delete 3. This query requires a specific cluster to be de-
fined. Seek for any cluster of size four. Include its ID in the query and change
the probability with variables accordingly.

• Query insert, update, delete 4. This query should also be run on any cluster of
size four. Include the ID of each offer present in that cluster in one of the four
queries. Include the cluster ID in the probability variables.

• Query insert, update, delete 5. This query removes a cluster. Search for a cluster
with a sufficiently large size and include its ID. With the current limitations, a
cluster with the largest size is advised.

• Queries timing out. During the benchmarking, it could happen that queries take
too long to return an answer. In that case, the query is timed out. To verify
whether the functionality of the query is supported, change the query to run on
the part table. This part table contains a small portion of the dataset. If the query
still times out with this table, it could be worthwhile to decrease the size of this
table even further. To do this, go to QuestionMark: The Dataset Generator and
open database_filler_[DBMS].py. Then reduce the value in LIMIT FLOOR() in
the first query of prep_queries.

• Queries raising exceptions. During the benchmarking, it could also happen
that queries throw errors. When any query raises the exception invalid
memory alloc request size 1073741824 or Ran out of memory retrieving
query results, it can also be worthwhile to run the query on the ’part’ table.
Most likely, reducing the dataset size that the query needs to digest removes
this specific error. This verifies whether the functionalities in the query are sup-
ported by the system or not.

5.4.2. Query Implementation Decisions
Some of the queries defined in the benchmark were difficult to translate for a specific
dialect. During the translation, some decisions were made that deserve some addi-
tional explanation. For DuBio, the following queries required a special approach:

• Insight 6. DuBio does not have a function to retrieve the average probability
over all offer. Therefore, a manual approach was implemented in the query.

• Probabilistic 2. DuBio does not have a function to obtain the expected count of
a query result. Therefore, a manual approach was implemented.

• Probabilistic 3. DuBio does not have a function to obtain the expected sum of a
query result. Therefore, a manual approach was implemented.

• Probabilistic 4. It was decided to implement a clearer, more wordy implemen-

40 Chapter 5. Benchmark

tation than to make it more compact.

• Insert Update Delete 1 and 2. DuBio does not have an easy way to insert all ran-
dom variables with their corresponding probabilities in the dictionary. This pro-
cess was manually typed into the query. For 2, the query SELECT print(dict)
FROM bulk_dict WHERE name='mydict';was run to obtain the values generated
by the preparatory queries.

For MayBMS, the following queries required a special approach:

• Insight 4. MayBMS does not have a function to retrieve all certain offers. There-
fore, a manual approach was implemented in the query.

• Probabilistic 4. MayBMS does not support the creation of long composed ran-
dom variables. This query is practically impossible in MayBMS. Currently, an
implementation is chosen without the random variable information. The cor-
rect implementation is theoretically possible to obtain. In this scenario, for
each category a new table should be created containing only the products from
that table. Next, for each created category table, all present offers should be
grouped into one offer. As MayBMS does not display the random variable in-
formation when a GROUP BY is used, the result can be obtained by generating
a cross join over all records in the specific category table. The query will thus
be: SELECT category, tconf() FROM category_table c1, category_table
c2 ... category_table cn;, where n is the result of the query SELECT
COUNT(category) FROM offers WHERE category = 'your_category';. This
would create a query that is too large to comfortably work with and is unrealistic
to be implemented. It is thus concluded that the functionality is not supported
by MayBMS.

• All 5 Insert Update Delete. MayBMS does not manually repair the probability
space. To ensure a correct representation, the offers table should be build from
scratch each time an adaption is made. Therefore, adaptions are made to the
offers_setup table, after which the repair keys are created over the world proba-
bilities and attribute probabilities, which are then joined to create a new offers
table.

• Insert Update Delete 3. As the approach of any dialect can be rather unique, a
compact description is provided by the pseudocode. Since MayBMS does not
have a compact representation of the offers, multiple records in the database
need to be adapted to update the probability space of a single offer.

5.5. Metrics
The QuestionMark benchmark has a selection of metrics that are simple yet powerful.
The selectedmetrics cover themost important aspects of a probabilistic databaseman-
agement system and can provide a good indication of how well the tested system fits
the real-world scenario it will be used for. These metrics combined measure the sup-
ported functionalities of the system, its speed and the usability. For this benchmark,
the following metrics are included.

5.5. Metrics 41

Query functionality coverage. This metric provides insight into the functional-
ity coverage of the database system and is determined by multiple sub-metrics. When
running the queries to obtain their results and runtime, it can happen that a specific
functionality is not supported or the database system cannot handle the load required
to execute the query. In these cases, the system returns an error. The error raised
during execution are stored and printed as the query result. After the benchmark ex-
ecution has finished, an overview table is created that indicates what queries finished
execution and which threw an error. The percentage of successful queries is then also
determined. For each query that threw an error, it also indicates what query function-
alitymight be lacking. In each case, a critical look is needed to verify whether the error
is thrown due to an actual lack of functionality support or due to another reason, for
example a typo. With the gathered knowledge, the functionality coverage table can
be manually filled in. In this table, a distinction is made between functionality that
is natively supported and functionality that can be implemented with a workaround
method

Brevity of the query dialect. This metric is determined by the total amount of
characters needed for all queries and gives insights into the succinctness of the query
language. A more succinct query dialect often requires less time to write queries with
and is often easier to understand. This metric value is obtained by iterating over all
queries and adding their character count. Spaces are removed from the calculation.
Optionally, characters can be removed from specific queries. For example in query
IUD_1_rollback offers are added to the database. As the data that represents the offer
is not indicative of the complexity of the query language, the amount of characters used
for that representation is subtracted from the total character count for that query.

Runtime of queries. This metric provides insight into the speed of query execution.
A lower runtime is required to obtain higher query throughput rates and improves the
flow of business processes relying on the query results. This metric is also obtained
by a combination of sub-metrics. To obtain the runtime of a query, the PostgreSQL
EXPLAIN ANALYSE statement is used. This statement returns the execution plan of var-
ious queries or statements and tracks its runtime. When available, it differentiates
between the planning time and execution time of a query. In this distinction is not
supported by the DBMS, only a total runtime is returned. For each query, the aver-
age runtime over the specified iterations is printed. Each query is run with a warm
start. After all benchmark queries have run, a total average planning time and execu-
tion time, or total average runtime is calculated. This is the sum of all time averages
of all queries. The total time provides a quick idea of the speed of the tested DBMS.
For each application scenario, the acceptable runtime of a query differs. It is thus ad-
vised to verify the significance of the queries and per query determine the acceptable
runtime.

Probabilistic data overhead. This metric represents the additional storage space
required to store the probabilistic representation of the data. When processing large
volumes of data, needing additional storage space to store the probabilistic represen-
tation of the data could get costly. As each probabilistic DBMS stores their probabilis-
tic representation in a unique way, the probabilistic data overload is calculated for
each DBMS differently. For both systems, the storage space used is determined by

42 Chapter 5. Benchmark

the pg_size_pretty statement of PostgreSQL. For DuBio, the overhead percentage is
determined using the following calculation:

sentence+ dictionary

offers+ dictionary
× 100

Here, sentence is the size _sentence column in the offers table, dictionary is the size
of the _dict table, and offers is the size of the offers table.

For MayBMS, the following calculation is used to determine the overhead percentage:

setup× (1− distinct ids count
ids count

) + (offers− setup)

offers
× 100

Here, setup is the size of the offers_setup table, distinct_ids_count is the count of
all distinct values of the id column in the offers table, ids_count is the count of all
values of the id column in the offers table, and offers is the size of the offers table.

The calculation forMayBMS is a bit more complex, asMayBMS does not create a com-
pact representation of the probability space over a single offer. Because of that, data
duplication is created in the offers table. The overhead that this duplication creates is
determined by counting the id values.

User friendliness. User friendliness is another metric that is composed from sev-
eral sub-metrics. As user friendliness is something of amore personal taste and cannot
bemeasured from a benchmark run, all sub-metrics are in the form of statements that
should be rated on a scale from 1 to 5. On this scale, a 1 means that the user strongly
disagrees with the statement and a 5 means that the user strongly agrees. The fol-
lowing aspects should be evaluated to determine a final user friendliness score of the
system:

[1, 2, 3, 4, 5] The software is well documented.
[1, 2, 3, 4, 5] The software was easy to work with.
[1, 2, 3, 4, 5] We have sufficient in-house expertise to workwell with the software.
[1, 2, 3, 4, 5] I am satisfied with the monetary expenses that need to be made for

running the software.
[1, 2, 3, 4, 5] The software has a good support service.

5.6. Design Decisions
During the design phase of the benchmark, several measures have been implemented
to ensure that this benchmark is well designed and fair. The measures taken are de-
scribed in this section in alphabetical order.

Benchmark Results Documents. To provide an easy overview of the benchmark
results, the produced results are all loaded into two benchmark results document. The
first document is focused on providing the results of some genericmetrics. The second
document provides the outcomes of a selection of metrics per query.

5.6. Design Decisions 43

CodeDocumentation. Code documentation is applied to provide clarity and trans-
parency on the codebase and to guide the user in the use of the benchmark. To ensure
the code is easily understandable by any programmer, the code is thoroughly com-
mented. These comments provide a general explanation of the defined functions and
provide additional information on more complex code. The code is also accompanied
by a compact README and a comprehensive instruction manual.

Dataset Selection. As also explained in Section 4.2, best efforts weremade to select
a dataset that is a good fit for this benchmark. A set of requirements was defined to
obtain a dataset that is true to the real world, can easily be reproduced and is transpar-
ent. The chosen dataset meets the set requirements. Nevertheless, the chosen dataset
does have some practical limitations. As an existing dataset is chosen, a generation
bias towards any technology is not present. Previous knowledge on DuBio was also
not used to influence the selection of a dataset.

Dataset SizeGeneration. TheDataset Generator includes a function that can alter
the size of the generated dataset. This size alteration ensures that the load that the
benchmark will test approaches the load of the real-world application it has to mimic.
As the dataset is originally ordered, including only the first x records is not the best
option. To also ensure for reproducibility, a selection of offers or clusters is chosen
based on the hash of the id. This provides a pseudo-random selection of offers or
clusters. During the dataset resize phase, a choice can already be made between a
dataset with higher uncertainty or one with lower uncertainty. Choosing offers based
on their ID gives a higher variation in offers, producing more clusters that are smaller.
Choosing offers based on their cluster ID selects full clusters of offers, resulting in
fewer clusters that are larger. The size of the dataset can be specified as a percentage
of up to two decimal places of the full dataset size.

Guided inclusion to support new software. As each probabilistic DBMS has its
own unique way of storing and displaying uncertainty, new benchmark code must be
added to support this data storing. The benchmark guides in this process by providing
step-wise instructions and being well-documented. The benchmark queries should
also be translated to the corresponding SQLdialect. Although the code documentation
guides the process of adding a new probabilistic DBMS, programming experience is
required to do this.

Instruction Manual. With the benchmark, a clear instruction manual is provided.
This manual contains information on the functioning of the two programs, on the pa-
rameters that can be tuned, and on the queries. It also guides the user in the processing
of the benchmark results. The instruction manual explains how the system should be
adapted to benchmark new probabilistic database management systems.

Manual Roadmap. To guide the user on how to use the benchmark, each of the
two programs is equipped with a comprehensive instruction manual. This instruc-
tion manual contains a roadmap on how to use the program out of the box for bench-
marking DuBio and/or MayBMS. The manual in natural language is also mirrored in
a Python file, where the listed functions can be easily found and run. This ensures that
everyone with minor programming experience can work with the benchmark. It also
provides instructions on how to adapt the program to include any new probabilistic

44 Chapter 5. Benchmark

DBMS.

Metrics. As this is the first generic benchmark to appear for probabilistic databases,
a selection of metrics were chosen that are simple yet powerful to provide a complete
picture of the system tested. The metrics included are runtime of queries, operation
support, query length, size of the probabilistic representation and usability.

Open Source Codebase. All code from the QuestionMark benchmark is freely
available for download at GitLab [98, 99]. This provides transparency in the dataset
generation and benchmarking process. Best efforts were made to create a well-
documented and well-readable codebase. The QuestionMark benchmark for proba-
bilistic databases is released under the CC Attribution 4.0 International license, also
known as CC BY 4.0, for clarity and transparency.

Parameter Tuning. To ensure that the benchmark can be adapted to approach
any real-world scenario as closely as possible, various parameters are defined in the
benchmark that can be tuned to alter the final result of the dataset and benchmark test.
In both benchmark programs, a Python file is included that contains all parameters
as global variables. This file also contains an explanation of the present variables to
provide guidance on how to tune them. By having all parameters at a central place,
they can easily be found and adapted for tuning. Apart from improving the (expected)
precision and recall of the dataset, parameters are also present to scale the amount of
data included in the dataset and the uncertainty that data has.

ProductMatchingAlgorithms. The selected dataset is clusteredwith a determin-
istic approach. To make this a probabilistic dataset, the existing clusters have been
removed and a new probabilistic clustering has been generated. For this probabilistic
clustering, several algorithms have been used. More information on these algorithms
and the selection process can be found in Section 4.3. Introducing a new probabilistic
clustering ensures that the dataset approaches any real-world scenario better than by
adapting the existing clustering. The existing clustering can be used as a means to
determine the new clustering.

Product Matching Performance Evaluators. The dataset produced by Ques-
tionMark: The Dataset Generator can be verified on quality. For this, additional
functions have been added to the program that verify the performance in terms of
(expected) precision and recall. For this, the WDC Golden Standard dataset is used,
which is a small labelled version of the WDC Product Offers dataset. Providing these
performance measures provides transparency in the quality of the produced dataset
and can be used as an indicator when tuning parameters.

Pseudocode SQL. As this benchmark is designed to cater for multiple systems, a
generic manner of displaying the required queries was required. For programming
languages, pseudocode can be used to define the steps of an algorithm in natural lan-
guage. For SQL this standardised method was not yet defined. In this research, a
pseudocode like language is defined and used to allow for easy translation of the in-
cluded queries to any new dialect. This omits the need to specialise in the dialects of
MayBMS or DuBio to be able to understand the included queries or add a new dialect.

Real-worldApproaching. On the spectrum from synthetic to real world, theQues-

5.6. Design Decisions 45

tionMark benchmark is approaching real world. Earlier research on probabilistic
databases tested the developed systems mainly on synthetic data in a synthetic en-
vironment. A benchmark that can be tuned to mimic a range of real-world scenarios
provides a true image of the performance of any probabilistic DBMS tested.

Two Python Programs. The QuestionMark Benchmark is divided in two Python
programs. The decision was made to separate the dataset generation and the exe-
cution of the benchmark test. The two functions are sufficiently distinct that the de-
creased complexity of each program outweighs the benefit of slightly lesser setup time.
It provides two simpler instruction manuals and ensures a clear separation of con-
cerns.

Queries. For this benchmark, a range of queries was selected that cover the full func-
tionality desired by any probabilistic DBMS. As the benchmark is designed to test any
probabilistic DBMS, queries should be formulated independently from the functional-
ities of either MayBMS or DuBio. The used methodology can be found in Section 4.4.
This methodology results in queries that include the desired functionality of any prob-
abilistic DBMS. This ensures that the queries represent real-world scenarios, have a
broad range from targeting specific parts to the full system, and that no existingDBMS
is favoured. As the queries are partially based on the known possibilities of the prob-
abilistic database systems MayBMS and DuBio, it could be that the possibilities of
another probabilistic DBMS is not fully represented. Users of the benchmark are free
to define and add their own queries to the benchmark when functionalities are not yet
included.

6
Empirical Evaluation

After the benchmark has been designed, it is time to put it to the test. In this chapter,
the benchmark will be run on bothMayBMS and DuBio. Simple user tests will also be
run with the benchmark. Finally, a conclusion will be drawn on the performance of
the presented benchmark.

6.1. Case Study: Benchmarking MayBMS and DuBio
To gain insights into the descriptive capabilities of the benchmark and to put it to the
test, both MayBMS and DuBio are benchmarked using the QuestionMark benchmark.
The methodology used for this is described in Section 4.6. The performance results
of both systems will be presented in this section. The code and queries required for
running the benchmark tests on both systems are included in the benchmark codebase
and can be found in Appendix A.3. Raw results can be found in Appendix E.2.

6.1.1. Case Description
To properly test the benchmark and see if it is fit for use in a real-world scenario, a
case study is designed. For this case study, the hypothetical business Gladiolas Gar-
dening and Landscaping is used. Gladiolas Gardening was founded in 1998 by two
sisters. They bought an old dilapidated post office and turned it into a wonderful
garden center. Business has been blooming on that location ever since. From the
period of 2010 till 2019 Gladiolas Gardening purchased and renovated another three
dilapidated buildings with the help of government support. About a year ago, the sis-
ters agreed upon facing a new challenge to expand their business even further. They
contacted a financially struggling landscaping company called Larkspur and decided
to merge. The two companies continued under the name Gladiolas Gardening and
Landscaping, although the name Larkspur is still used to reference the landscaping
industry.

Although the merge was a success and the service offered by the landscaping com-
pany is again profitable, the data management of both companies has become a strug-
gle. Both companies have extensive databases with customer information and contain
data on plants and flowers. However, after merging the two companies the amount

47

48 Chapter 6. Empirical Evaluation

of conflicting data turned out to be unworkable; customers associated to both busi-
nesses lost part of their loyalty points and plants for landscaping got delivered to old
addresses. Additionally, Gladiolas Gardening and Landscaping wants to utilize the
present knowledge on plants and flowers to improve their services. By adding knowl-
edge on the lifespan of plants in different types of soil, they canprovide their customers
with better information on how to care for the purchased plants and flowers and pro-
vide a better estimation of the longevity of a plant. However, due to the rigidity of their
current DBMS retrieving this type of data is not intuitively possible.

Gladiolas Gardening and Landscaping instructed their ICT-manager to explore the
possibilities of probabilistic database technology. During an exploration on the inter-
net, the ICT-manager stumbled upon the probabilistic databasemanagement systems
DuBio and MayBMS, and found QuestionMark to evaluate the performance of both
systems. As the company does now own extensive hardware, both systems are set up
in a Docker container on a small server. The benchmark is also run on this hardware.

6.1.2. Benchmark Execution
For the execution of the benchmark, the steps provided in the manual of Appendix A
and the steps in the manuals of both QuestionMark Python programs were precisely
followed.

Phase 1: Reading through the manual and understanding the product
The first phase of the benchmarking process consists of getting to know the bench-
mark programs and to read through the manual. As the company does not have the
resources to investigate the best possible probabilistic DBMS, it was decided to run
the benchmark on both already included systems, which are MayBMS and DuBio.

Phase 2: Running QuestionMark: The Dataset Generator
The parameters of QuestionMark: The Dataset Generator were tweaked to repre-
sent the current dataset at the company as much as possible. The company is an
SME (small to medium enterprise) with information from around 450 customers and
around 1100 data points on plants and flowers. The dataset contains some uncertainty,
but is not entirely uncertain. As the staff is already used to handling the present un-
certain data in a deterministic manner, the new DBMS should not express doubt on
every data point. Some incorrect information is preferred to processing overhead of
probabilistic data. To represent this real-world dataset as closely as possible in the
generated dataset, the following parameter values were chosen:

Variable Value
dist jaro
smaller_dataset True
dataset_size 0.01
whole_clusters False
non_bkv [’description’, ’identifiers’, ’keyValuePairs’, ’price’, ’specTable-

Content’]
block ASN
ws 2

6.1. Case Study: Benchmarking MayBMS and DuBio 49

phi 0.36
mbs 5
attributes [’brand’, ’category’, ’cluster_id’, ’description’, ’identifiers’, ’key-

ValuePairs’, ’price’, ’specTableContent’, ’title’]
weights [1, 0.7, 1, 0.8, 0.8, 0.8, 1, 0.7, 1]
lower_phi 0.28
upper_phi 0.36
dbms MayBMS or DuBio
performance False

Phase 3: Running QuestionMark: The Probabilistic Benchmark
Next, QuestionMark: The Probabilistic Benchmark was set up. For Gladiolas Garden-
ing and Landscaping, select queries and insert statements are most often used. Since
the company wants to have a complete overview, all queries are selected to run the
benchmark on. For a clearer overview, the queries and statements were run in a sep-
arate benchmark process. Since a lightweight dataset is required, time will allow for
a full benchmark run. Since the part of the database containing information on flow-
ers and plants is often queried on the spot next to customers, relevant queries need
to finish within five minutes. The following parameters are set in QuestionMark: The
Probabilistic Benchmark:

Variable Value
dbms MayBMS or DuBio
iterations 5
timeout 300
show_query_plan True
queries The full list of queries

Phase 4: Digesting the results and drawing conclusions
During phase 4, the results generated by QuestionMark are digested by following the
instructions from themanual in Appendix A. During the benchmark execution of both
MayBMS and DuBio, several errors were thrown that had to be resolved to find out
more information on the load handling capabilities of the selected DBMS. Therefore,
the benchmarking process iterated several times over phases 3 and 4. The results
produced during phase 4 are discussed in the next sections. For MayBMS, this is Sec-
tion 6.1.3 and for DuBio Section 6.1.4.

6.1.3. Results MayBMS
This section provides an overview of the benchmark results of MayBMS. The raw re-
sults of the benchmark test for MayBMS can be found in Appendix E.2. The results
of this benchmark test are obtained by following the instructions from the manual in
Appendix A.5.

Effectiveness
QuestionMark could provide a somewhat clear image on the effectiveness ofMayBMS.
The metrics on effectiveness generated by QuestionMark can be found in Table 6.1.
Due to compatibility issues betweenMayBMS andPsycopg2, statements that runwith-

50 Chapter 6. Empirical Evaluation

out error within a database tool crashed in QuestionMark. The percentage of success-
ful queries is obtained by omitting the query parts that crash specifically with Ques-
tionMark. From the benchmark test and additional error solving through a database
tool, it can be concluded that MayBMS supports the functionalities as presented in
Table 6.2.

Although MayBMS requires some attention due to its legacy code base, it was able to
run almost all queries successfully. MayBMS cannot provide a compact representa-
tion of offers and their probabilities. Since MayBMS does not support logical disjuc-
tion within a single record. Therefore, when disjunction is present, multiple records
need to be created for a single offer. MayBMS also does not support the most recent
deterministic DBMS queries. As it is built into PostgreSQL 8.3.3., all functionality
added to newer PostgreSQL versions is not supported.

Metric Value
Percentage of successful queries 92.31%
Percentage of successful statements 100.0%

Table 6.1: Overview of all compact effectiveness metric values returned by MayBMS

Native Possible Functionality
1 [] [] Support of most recent deterministic DBMS queries
2 [] [] Offering a compact representation of the present uncer-

tainty
3 [X] [] Get the probability of a an offer
4 [X] [] Get the probability of a composed result
5 [X] [] Apply aggregate functions on probabilities
6 [X] [] Filtering on probability
7 [X] [] Get the expected count
8 [X] [] Get the expected sum
9 [] [X] Get the most probable answer
10 [] [X] Verify if a specific possible world exists
11 [] [X] Verify if a record is certain
12 [] [] Updating the uncertainty of an offer
13 [] [] Repair the probability space after addition, update or

deletion of offers
14 Any anomalies discovered during benchmarking

Table 6.2: Supported functionality by MayBMS

The following log was created while altering queries that have raised an exception:

Efficiency
QuestionMark can provide plenty information on the efficiency of MayBMS. The met-
rics on efficiency generated byQuestionMark canbe found inTable 6.3. QuestionMark
also generated graphs to provide insights into the character count and runtime of the
queries. The graphs created on the character count can be found in Figure 6.2. The
graphs on runtime can be found in Figure 6.1.

6.1. Case Study: Benchmarking MayBMS and DuBio 51

Fix log 1

Query that raised an exception: insight_2

Prior adaptations done on the query: -

Exception raised by the query: column ”offers._v0” must appear in the
GROUP BY clause or be used in an aggre-
gate function.

Suspected cause of the exception: MayBMS does not know how to handle the
probability space in a deterministic query.

Implemented fix: Run the query on the setup table.

Fix log 2

Query that raised an exception: probabilistic_4

Prior adaptations done on the query: Tried to find a solution to having the query
also return the random variables that were
used to calcuate the probabiltiy.

Exception raised by the query: -

Suspected cause of the exception: Lack of support.

Implemented fix: Accepted it will not show this information,
it will require an unreasonable large query.

Fix log 3

Query that raised an exception: All insert_update_delete

Prior adaptations done on the query: -

Exception raised by the query: column attrs. does not exist. syntax error
at or near ”REPAIR”

Suspected cause of the exception: MayBMShas legacy code that is not compat-
ible with Psycopg2.

Implemented fix: Tried the code in database tool and it
worked. To obtain some information on
the runtime, the query part that repairs the
probability space is removed in all queries.

MayBMS can run the queries and statements given to it rather fast. MayBMS does not
support fast changing datasets well. When data is added or uncertainty is updated,
a new probability space should be created. This requires some additional queries. It
should be noted that the displayed runtime of the statement does not include repairing
the probability space. The actual runtime of statements is higher. MayBMShas a good
character count for its queries, but is not very character efficient on its statements. For
the queries, the query dialect hides the complexity of the underlying processes well,

52 Chapter 6. Empirical Evaluation

meaning that you canwrite queries succinctlywithMayBMS. Finally, asMayBMSdoes
not have a compact representation of the probability space, it uses over 80% of the
dataset for duplicate data, random variables and probabilities. This makes MayBMS
space inefficient.

Metric Value
Total number of characters needed for all queries 1412 chars
Total number of characters needed for all statements 3626 chars
Percentage of successful queries 92.31%
Percentage of successful statements 100.0%
Total runtime of all queries 112.76 ms

Total runtime of all statements 111.05 ms
Total size of the probability space 3240 kB
Total size of duplicate records 875.5 kB
Percentage of data used for probabilistic representation 80.39%

Table 6.3: Overview of metric result returned by MayBMS

Figure 6.1: Runtime of all queries in MayBMS

6.1. Case Study: Benchmarking MayBMS and DuBio 53

Figure 6.2: The character count for all queries in MayBMS

Appeal
MayBMS scores average on appeal. The software documentation is sufficient for basic
queries, but once queries becomemore advanceddocumentation is lacking completely.
It is, for example, not explained in literature how to repair the probability space once
new records are included in a table. Recalculating this entirely each time new data is
added is a lot of overhead for large tables. This also results that the software is not
super easy to work with. Regarding expenses, MayBMS is completely free. Scoring
MayBMSbased on the appeal table in the usermanual provides the result as presented
in Table 6.4.

[1, 2, 3, 4, 5] The software is well documented.
[1, 2, 3, 4, 5] The software was easy to work with.
[1, 2, 3, 4, 5] We have sufficient in-house expertise to workwell with the software.
[1, 2, 3, 4, 5] I am satisfied with the monetary expenses that need to be made for

running the software.
[1, 2, 3, 4, 5] The software has a support service.

Table 6.4: The appeal scores for MayBMS

6.1.4. Results DuBio
The raw results of the benchmark test for DuBio can also be found in Appendix E.2.
Also for DuBio, the results of this benchmark test are obtained by following the in-
structions from the manual in Appendix A.5.

Effectiveness
QuestionMark could provide a clear image on the effectiveness of DuBio. The met-
rics on effectiveness generated by QuestionMark can be found in Table 6.5. From the
benchmark test, it concludes that DuBio has a high effectiveness. DuBio supports the
functionalities as presented in Table 6.6. A small x is used to indicate that it can only be
run on small portions of the dataset, such as a specialized view. DuBio was able to run
all insert, update an delete statements and could run most of the queries successfully.

DuBio is loosely built upon PostgreSQL, which ensures that all new functionalities of
PostgreSQL are also supported in DuBio. It does not have native support for expected
sum and expected count, but this can be calculated using aggregate functions. DuBio

54 Chapter 6. Empirical Evaluation

also does not have a good support for fast changing datasets. When data is added or
uncertainty is updated, the user must manually update the probabilities in the dictio-
nary. Additionally, DuBio struggles calculating the probability over large sentences
and could only manage to do so for a dataset of 42 records in size.

Metric Value
Percentage of successful queries 92.31%
Percentage of successful statements 100.0%

Table 6.5: Overview of all compact effectiveness metric values returned by DuBio

Native Possible Functionality
1 [X] [] Support of most recent deterministic DBMS queries
2 [X] [] Offering a compact representation of the present uncer-

tainty
3 [X] [] Get the probability of an offer
4 [x] [] Get the probability of a composed result
5 [X] [] Apply aggregate functions on probabilities
6 [X] [] Filtering on probability
7 [] [X] Get the expected count
8 [] [X] Get the expected sum
9 [] [X] Get the most probable answer
10 [X] [] Verify if a specific possible world exists
11 [X] [] Verify if a record is certain
12 [] [X] Updating the uncertainty of an offer
13 [X] [] Repair the probability space after addition, update or

deletion of offers
14 Any anomalies discovered during benchmarking

Table 6.6: Supported functionality by DuBio

The following log was created while altering queries that have raised an exception:

Fix log 1

Query that raised an exception: probabilistic_4

Prior adaptations done on the query: -

Exception raised by the query: The current running query has timed out.

Suspected cause of the exception: DuBio requires too much time reading all
probabilities from the dictionary.

Implemented fix: Running the query on the part table.

Fix log 2

Query that raised an exception: probabilistic_4

6.1. Case Study: Benchmarking MayBMS and DuBio 55

Prior adaptations done on the query: Running it on the part table

Exception raised by the query: The current running query has timed out.

Suspected cause of the exception: DuBio still requires too much time reading
all probabilities from the dictionary.

Implemented fix: Iteratively reducing the size of the part table
until the query finishes.

Fix log 3

Query that raised an exception: probabilistic_4

Prior adaptations done on the query: Reducing the size of the part table

Exception raised by the query: Ran with dataset size of 42

Suspected cause of the exception: -

Implemented fix: Queried for a column timeout, so the bench-
mark run finishes.

Efficiency
QuestionMark provides sufficient information regarding the efficiency of DuBio. The
metrics on efficiency generated by QuestionMark can be found in Table 6.7. The
graphs created on the character count can be found in Figure 6.3. The graphs on run-
time can be found in Figure 6.4.

The efficiency of DuBio is not optimal. When digesting a query calculating the proba-
bility over a large part of the dataset, DuBio starts to struggle and get a long execution
time. In DuBio, each probability needs to be looked up in the dictionary table, which
takes a significant amount of time. Also, the characters required to run all queries is
rather long. DuBio currently does not hide its complexity, making that more charac-
ters are required. Also, the manual addition of probabilities to the dictionary in insert
and update statements requires significant characters. DuBio does have a compact
representation for the probabilistic data and is thus more space efficient.

Metric Value
Total number of characters needed for all queries 1846 chars
Total number of characters needed for all statements 2138 chars
Total planning time of all queries 1.64 ms
Total execution time of all queries 472.02 ms
Total planning time of all statements 0.26 ms
Total execution time of all statements 10.63 ms
Total size of the _sentence column 160 kB
Total size of the dict table 784 kB
Percentage of data used for probabilistic representation 50.64%

Table 6.7: Overview of all compact efficiency metric values returned by DuBio

56 Chapter 6. Empirical Evaluation

Figure 6.3: The character count for all queries in DuBio

Figure 6.4: Runtime of all queries in DuBio

Appeal
The appeal of DuBio is also average. The software is currently not well documented,
which makes it harder to work with. It is pleasant that it runs on the most recent
PostgreSQL version. Also, DuBio is completely free. The appeal of DuBio is higher, as
it is still under development. Aspects as documentation and ease of querying are thus
likely to improve in the future. Scoring DuBio based on the appeal table in the user
manual provides the result as presented in Table 6.8

6.2. User Testing 57

[1, 2, 3, 4, 5] The software is well documented.
[1, 2, 3, 4, 5] The software was easy to work with.
[1, 2, 3, 4, 5] We have sufficient in-house expertise to workwell with the software.
[1, 2, 3, 4, 5] I am satisfied with the monetary expenses that need to be made for

running the software.
[1, 2, 3, 4, 5] The software has a support service.

Table 6.8: The appeal scores for DuBio

6.1.5. Conclusion
The benchmark has successfully informed Gladiolas Gardening and Landscaping on
the possibilities of both MayBMS and DuBio. Both systems still have their flaws, but
their potential is great enough to benefit to the company. Although MayBMS seems
to be able to process larger quantities of probabilistic data, DuBio comes with greater
usability and promise, due to it being a more novel technology.

QuestionMark showed that it is capable of providing sufficient information regarding
the effectiveness, efficiency and appeal of two different probabilistic database man-
agement systems. Although no unequivocal conclusions will be drawn in this paper
regarding the best fitting probabilistic DBMS, as to ensure an unbiased view, it can be
concluded that QuestionMark fulfills its purpose of informing its client of the capabil-
ities of any tested DBMS.

6.2. User Testing
To verify the usability of the designed benchmark, user tests have been executed. The
methodology used for this is described in Section 4.7. The exact instructions provided
to the participants and the consent form can be found in Appendix D.

After each user test, the received feedback was implemented in the benchmark to im-
prove its design. This ensured that new participants did not need to work through
the same flaws. For each participant, a summary of their experimental results was
produced. The extensive results can be found in Appendix D.4.

Participant #1
During the study, the laptop provided for the experiment posed some struggles to set
up the Python environment required to run the study. The researcher guided the par-
ticipant in setting up the environment to allow the participant to focus on the impor-
tant part of the study. During the experiment is became clear that more explanation
was required for several steps of the benchmarking process. Some phases of the bench-
marking process also requires additional instructions by the researcher to inform the
participant better on the imaginary situation they are participating in. During this
study, it also became clear that the process of manually uncommenting and running
the functions required for each step is a tedious process. The participant also indicated
that too many clicks are required to navigate and use the system.

After the user study with participant #1, the following changes were implemented:

• The instructions in MANUAL.md of QuestionMark: The Dataset Generator were

58 Chapter 6. Empirical Evaluation

improved to provide clearer instructions on how to download the dataset, how
to manually zip the produced files, and by making the explanation more concise
by combining steps and removing instructions on the ISA algorithm.

• Additional instructions were provided during the benchmarking process, to in-
dicate that the parameters are already correctly set and that a smaller dataset
should be used.

• The process in manual.pywas automated and the instructions in MANUAL.mdwere
changed accordingly in both QuestionMark programs.

• The Python environment on the provided laptop was set up more robustly.

• database.ini.tmpl was updated to also contain a port field.

Participant #2
The laptop provided for the experiment again posed some struggles with the Python
environment. Again, the researcher guided the participant in setting up the environ-
ment. This participant also indicated that too many clicks are required for navigating
the systems. The subject indicated that the manual is clear and elaborate. More ex-
planation on how and why of probabilistic benchmarking and setting up a database
connection is desired.

After the user study with participant #2, the following changes were implemented:

• A Python environment with the project already downloaded is setup for the par-
ticipants. Theywill be directed to the already set up environment once they begin
the process of downloading the software.

• The manual of both QuestionMark systems are improved. It is indicated more
clearly that the performance tests are optional. The overall feel of both manuals
are made more similar.

Participant #3
This participant indicated that the manual provided was extensive and clear, but also
noted that additional information regarding the included processes and the impor-
tance of benchmarking is desired. Again, it was indicated that the system requires too
many clicks before it can be used. The participant commented that they were very
much able to follow the instructions provided by the manual, but that they did not
have an understanding of what they were doing. The provided results of the bench-
mark are clearly displayed, but it is still hard to understand what the provided results
mean. Additional information is required and a graphical display is desired. The par-
ticipant also indicated that they would like to see a tenminute video on how to use the
benchmark. Several other comments were also made.

After the user study with participant #3, the following changes were implemented:

• Both manuals were updated to include the provided feedback.

• Typos in the software and manual were removed.

• More explanation on the benchmark queries was included.

6.2. User Testing 59

Participant #4
This participant did not struggle much during the benchmarking process. They in-
dicated that the manual is clear and that the software was easy to use. The results
provided by the benchmark should get some additional information, as it was not yet
clear what the provided results acutally meant.

After the user study with participant #4, the following changes were implemented:

• The performance results of QuesionMark: The Dataset Generator are enhanced
with graphs.

• The benchmark results of QuestionMark: The Probabilistic Benchmark are en-
hanced with graphs and additional explanation.

• Additional explanation was added to the manuals using drop-down menus.

Participant #5
During the study the participant did not struggle much with running the benchmark.
The participant indicated that they wanted to have more information on the internal
processes of the benchmark, but it was observed that the participant skipped the parts
containing additional explanation. The participant appreciated the way the program
was build and indicated that it was easy to use.

After the user study with participant #5, the following changes were implemented:

• The user manual was updated and minor error were removed. Another instruc-
tion is added to indicate where the user can find additional information.

• The extensive user manual, which is also included as Appendix A in this thesis,
was added to both projects.

• The directory structure in both projects was changed to hide files that the user
does not need to interact with.

Participant #6
This participant also did not struggle much with running the benchmark. The partici-
pant noticed some inconsistencies within the naming of files, which required some ad-
ditional instructions to clarify the new name or location. The main feedback provided
by the participant, is that they wanted to know what the requirements are for running
the benchmark. What Python version is required? Are there external dependencies in
the project? The participant provided instructions on how to easily include this. The
participant als indicated that the profided results should also be machine readable. A
JSON file should be created. This also allows for a quicker human overview of the
results.

After the user study with participant #6, the following changes were implemented:

• The manual was updated to include the correct file names and locations, break
down some steps and clarify the step regarding the database connection.

• The required specifications are included in both programs and the manual.

• The finish message in TEST is altered to only display when there are actually no
errors occurring.

60 Chapter 6. Empirical Evaluation

• The errors thrown during the benchmarking process are not displayed within
the run script anymore.

7
Conclusion

In this chapter, the results will be discussed and the findings of this research will be
summarised. Future work will also be identified and a reflection upon the limitations
of this research will be given.

7.1. Discussion
This researchwas performed to obtain an answer on twomain research questions. The
first research question sought an answer to how a benchmark can be designed to test
and compare probabilistic database management systems on real-world strain. The
second sought an answer to how the novel probabilistic database DuBio and the state-
of-the-art MayBMS perform when benchmarking these technologies with the devel-
oped benchmark. In this research, both questions have successfully been answered.

For answering the first research question, focus was put on literature study. With
the literature study, a theoretical framework was defined, which the design of Ques-
tionMark could follow. The existing literature regarding benchmarking is extensive,
although this is mostly limited to business processes. Regarding database benchmark-
ing specific, fewer literature could be found. Literature on how to build a benchmark
for probabilistic databases was lacking. QuestionMark was thus built upon the pillars
established by literature on the benchmarking of deterministic databases and bench-
marking in general. This paper contributes to the research on the design of bench-
marking systems for probabilistic databases specifically.

Following the theoretical foundations, the QuestionMark benchmark for probabilistic
databases was built. The main idea behind QuestionMark is that it is real-world ap-
proaching. By offering a benchmark that approaches the real-world, systems can be
evaluated based on strain that they are likely to encounter once they get deployed. This
research is thus the next step towards the widespread use of probabilistic databases
outside the academic world.

This research also went beyond the creation of QuestionMark and put it to the test.
This part answered the second research question. This testing was done by imple-
menting support for two probabilistic database systems: MayBMS and DuBio. By

61

62 Chapter 7. Conclusion

implementing the novel system DuBio and the state-of-the-art MayBMS, the perfor-
mance and usability of the benchmark could be verified. Apart from generating use-
ful feedback on QuestionMark, it also provided insights into the performance of both
database systems. The implementation of these systemcontributed significantly to the
improvement of QuestionMark. The user testing performed with QuestionMark also
led to useful insights, improving on the design even further. Both from the case study
performed and from the feedback collected during the user study, it can be concluded
that QuestionMark is a user friendly system that fulfills its purpose of benchmarking
systems. QuestionMark can provide sufficient information on key areas of a system
and can guide the user in gaining meaningful insight.

The design and development of QuestionMark enables the evaluation and compari-
son of the performance of a wide range of probabilistic databasemanagement systems.
QuestionMark is another step towards the widespread use of probabilistic databases.
The design of QuestionMark presented in this research is robust and capable of provid-
ing a large range of metrics determining the performance of both DuBio andMayBMS.
Due to the open source nature of QuestionMark, support for other systems can be
implemented when desired. The extensive manual guides the user in the use of the
system.

7.2. Limitations
During this research, some limitations were encountered. This section will describe
the limitations and provide possible solutions for them. The limitations are listed in
alphabetical order.

Benchmark design flaws. The design of the benchmark codebase does have its
limitations. Its major limitation is that the code is based upon PostgreSQL based
database systems. Therefore, whenever a non-PostgreSQL based system should be
benchmarked, significant alterations to the database connection code should bemade.
Another, similar, limitation is that someone with programming experience is needed
even when a PostgreSQL based DBMS needs to be benchmarked. This limitation is
hard to bypass, as each probabilistic DBMS has its own manner of processing uncer-
tainty, which should be programmed into the code. Also, the benchmark does not yet
have a graphical user interface. Currently the benchmark needs to be run from the
code itself, thus also requiring someone with minor programming experience. What
also poses problems with running statements with MayBMS, is the collaboration with
the Psycopg2 Python library. Both technologies are nearing to legacy and thus show
some strange behaviour when collaborating. This causesMayBMS statements to raise
exceptions, that should be able to run fine. Finally, as the code has not been tested ex-
haustively, bugs can still be present in the code.

Dataset generation flaws. The Dataset Generator is also not flaw-free. Firstly,
the generation of the probabilistic data is based on the possible worlds theory. This
possible worlds theory is what DuBio and MayBMS also use to represent the uncer-
tain data. It could be that the generation of the dataset following this method favours
database management systems that are also based upon this representation. As the
possible worlds generation was implemented mainly following a DuBio research pa-

7.2. Limitations 63

per, this could influence the fairness. Nevertheless, it is deemed unlikely that the way
the dataset is generated influences the performance.

As a second, more prominent, flaw, The Dataset Generator has a limitation on the
maximum cluster size it can generate. The current implementation of the generation
of possible worlds imposes a limitation on the maximum cluster size that can be gen-
erated. The generation of possible worlds from a selection of offers grows factorially,
meaning that the calculation time needed explodes when generating a probabilistic
cluster from a block of seven offers.

A third flaw is that the performance of The Dataset Generator is lacking. As can be
seen in Appendix C, the performance of both the blocking algorithms as the matching
algorithm is falling short. This results in a dataset generation that is less credible
as a real-world scenario. As no extensive research was conducted to include the best
blocking andmatching algorithm, the performance could also lack due to a suboptimal
algorithm choice. It should be noted that a precision and recall of 100% is not desired,
as there would then be no uncertainty, but the current precision of 46% and recall of
33% are deemed too low. It should be noted that the performance of the benchmark
is not influenced by the quality of the dataset.

Dataset limitations. As mentioned in Section 4.2, the dataset was selected based
on a set of defined requirements. While working with the dataset, limitations on the
chosen dataset were discovered. First, the dataset has most of its data in one big table,
making that there are limited possibilities with join-queries. Second, there are no
data attributes on which numeric operations can be performed. Sum-queries are now
performed on the cluster ID, which is not a real-world application of that column. To
omit these limitations, effort can be put into finding a dataset that is more fit or to
adapt this dataset to be more generalisable.

More familiar with DuBio than MayBMS. Although best efforts were made to
design the benchmark as independently from DuBio and MayBMS as possible, previ-
ous knowledge on both systems cannot be ignored. The possibilities of both systems
were extensively studied during the definition of the queries to eliminate a skew of
expertise. Nevertheless, it cannot be determined for certain if a favour bias towards
DuBio is fully absent. An external study should confirm the validity of the created
benchmark.

Hardware limitations. During this research, it was chosen to develop and test
QuestionMark on the same small machine. Due to the limited capabilities of that ma-
chine, the benchmark has only been run with the smallest dataset possible and with
limited uncertainty in the generated dataset. Although it is assumed that the size of the
dataset does not impact the performance of the benchmark itself, this is not explicitly
verified.

Threats to Fairness. In Section 3.3 eleven aspects to avoid to obtain a fair bench-
mark were presented. From these eleven, it was actively decided not to perform the
benchmark with a cold start, as suggested for a fair impression by Hohenstein and
Jergler [41]. This decision was made since clearing a cache fully requires significant
effort and with the current setup it cannot be verified if a cold start is truly cold. Ad-

64 Chapter 7. Conclusion

ditionally, running queries in a real-world business setting is almost never truly cold.
There is often some relevant data in the cache that results in a lukewarm start of a
query. The benchmark thus runs queries with a warm start.

Another aspect from [41] that might influence the fairness is any incorrectness in the
code. Best efforts were made to include high quality code. By having the codebase
open source, correctness of the code can be validated by third parties. As the code is
not too complex and the system is user tested, it is assumed that no incorrectness in
the code exists to skew the performance of any system.

As an additional threat to fairness, prior experience with DuBio cannot be ignored.
AlthoughMayBMS and other probabilistic database systems were studied extensively
before designing the benchmark, it must be acknowledged that DuBio remained the
most familiar system. This imbalance in experience with the systems was acknowl-
edged throughout the design of the benchmark and best efforts were made to compen-
sate for it.

As also suggested by Hohenstein and Jergler, the database should be tuned for each
probabilistic DBMS. As this requires expertise and takes much effort to get it right,
this step was omitted. It is not verified whether the performance of any DBMS is sig-
nificantly harmed by the default settings.

Query set flaws. For this benchmark, best efforts were made to obtain a set of
queries that is as complete and representative as possible. A literature review and
case study were conducted to obtain a diverse set of queries. However, due to limited
prior experience with querying databases the query set might not be fully real-world
representative. Peer review should validate the query set and additions or alterations
to this set could be made.

7.3. Future work
Based on the results of this research, several directions for future research can be iden-
tified. As the main direction of future research, the benchmark presented in this re-
search should be thoroughly tested to improve on its design even further. Although
this research showed promising results from the benchmark, it was only tested in a
controlled environment. Further testing of the benchmark should indicate whether
the benchmark is user friendly and whether it contains all required functionality. Al-
though this research is a good first step, the benchmark is most likely not yet perfect.
More research should show if specific probabilistic database functionalities are not yet
sufficiently covered and if the benchmark is truly fair.

This benchmark can also be used to evaluate the performance of several probabilistic
database management systems. Due to the broad functionality coverage by Question-
Mark, systems can be put to the test thoroughly. By running the benchmark on a
machine with better specifications, larger clusters can be formed, putting the proba-
bilistic systems under higher pressure. Also, QuestionMark can be updated to support
additional probabilistic database management systems. Feedback collected from that
process can further improve the design of QuestionMark and make it an even better
system.

7.4. Conclusion 65

Regarding QuestionMark: The Dataset Generator, future work should focus on im-
proving the performance of the blocking and matching algorithms. Although the ef-
ficiency and functionality support of a probabilistic database management system is
not influenced by the quality of the dataset, query results cannot be used to gain use-
ful information from. Ideally, the precision and recall of the dataset can be tweaked
to obtain a dataset ranging from very low to high uncertainty.

Another issue worth addressing is the generation of the possible worlds in Question-
Mark: The Dataset Generator. Due to the theoretical approach taken, the calculation
of probabilistic clusters explodes when their original cluster contains seven or more
products. It should be researched whether a more resource-efficient approach can be
implemented.

Since probabilistic databases are not yet widely used outside of the academic world,
this benchmark can also aid in showing the added value that the use of probabilistic
database systems canhave. For this, support for deterministic PostgreSQLqueries can
be implemented. This way, the results provided by a deterministic approach versus
a probabilistic approach can be compared. Running the benchmark on PostgreSQL
could also aid in providing a baseline measure to compare the efficiency of probabilis-
tic systems with. With this, the trade-off between the higher execution time and high-
value information can be visualised.

7.4. Conclusion
In this research, The QuestionMark Probabilistic Benchmark is presented. Question-
Mark is a benchmark to obtain information on the effectiveness, efficiency and ap-
peal of any probabilistic database management system. The benchmark is designed
to cover a wide range of functionalities, so that any application area can be tested. As
the benchmark is real-world approaching it can provide a true image of the perfor-
mance of the tested system.

The aim of this research was to design a benchmark that can be used to test probabilis-
tic database management systems on real-world strain. The design cycle as presented
in this research resulted in the development of the QuestionMark benchmark for prob-
abilistic databases. QuestionMark consists of two Python programs that together run
the benchmark. User testing has shown that QuestionMark is easy in use, although
minor knowledge on python is required. Due to the extensive manual and its open
source nature, QuestionMark can easily be extended to support various systems.

The QuestionMark benchmark for probabilistic databases is another step in the direc-
tion of widespread use of probabilistic database management systems outside of the
academic world. With this benchmark, developers of probabilistic database systems
can easily strain test their software and improve their product. Likewise, consumers
of probabilistic database technology can use QuestionMark to find what software fits
them best. QuestionMark is ready to guide the future of databases.

References

[1] L. Akritidis and P. Bozanis. “Effective Unsupervised Matching of Product Ti-
tles with k-Combinations and Permutations”. In: 2018 IEEE (SMC) Interna-
tional Conference on Innovations in Intelligent Systems and Applications
(2018).

[2] L. Akritidis et al.A self-verifying clustering approach to unsupervisedmatch-
ing of product titles. Vol. 53. 7. Springer Nature B.V., 2020, pp. 4777–4820.

[3] A. Ali, S. Talpur, and S. Narejo. “Detecting Faulty Sensors by Analyzing theUn-
certain Data Using Probabilistic Database”. In: 2020 3rd International Con-
ference on Computing, Mathematics and Engineering Technologies: Idea to
Innovation for Building the Knowledge Economy (2020), pp. 3–9.

[4] G. Anand and R. Kodali. “Benchmarking the benchmarking models”. In:
Benchmarking 15.3 (2008), pp. 257–291.

[5] L. Antova, C. Koch, andD. Olteanu. “10(10
6) worlds and beyond: Efficient repre-

sentation and processing of incomplete information”. In: VLDB Journal 18.5
(2009), pp. 1021–1040.

[6] L. Antova, C. Koch, and D. Olteanu. MayBMS. 2008. URL: http://maybms.
sourceforge.net/ (visited on 05/03/2022).

[7] L. Antova, C. Koch, and D. Olteanu. “MayBMS: A Possible Worlds Base Man-
agement System”. In: (2006).

[8] L. Antova, C. Koch, and D. Olteanu. “MayBMS: Managing incomplete infor-
mation with probabilistic world-set decompositions”. In: Proceedings - Inter-
national Conference on Data Engineering (2007), pp. 1479–1480.

[9] L. Antova et al. “Fast and Simple Relational Processing of Uncertain Data”. In:
IEEE 24th International Conference on Data Engineering (2008), pp. 983–
992.

[10] D. Ayala et al. “Multi-source dataset of e-commerce products with attributes
for property matching”. In: Data in Brief 41 (2022), pp. 1–6.

[11] N. Ayat et al. “Entity resolution for probabilistic data”. In: Information Sci-
ences 277 (2014), pp. 492–511.

[12] C. Back and D. L. Scapin. “Comparing Inspections and User Testing for the
Evaluation of Virtual Environments”. In: International Journal of Human-
Computer Interaction 26 (8 2010).

[13] M. Balazinska et al. “Data management in the worldwide sensor web”. In:
IEEE Pervasive Computing 6.2 (2007), pp. 30–40.

[14] I. Bhattacharya and L. Getoor. “Collective entity resolution in relational data”.
In: ACM Transactions on Knowledge Discovery from Data 1 (1 2007).

67

http://maybms.sourceforge.net/
http://maybms.sourceforge.net/

68 References

[15] K. Booijink. “Evaluating the Scalability of MayBMS, a Probabilistic Database
Tool”. Bachelor’s Thesis. University of Twente, 2019.

[16] L. E. Budde et al. “Development of a Database for Benchmark Datasets in Pho-
togrammetry and Remote Sensing”. In: ISPRS Annals of the Photogramme-
try, Remote Sensing and Spatial Information SciencesV-1-2022.June (2022),
pp. 187–193.

[17] K. Cao and H. Liu. “Entity Resolution Algorithm for Heterogeneous Data
Sources”. In: Proceedings - 2021 International Conference on Computer In-
formation Science and Artificial Intelligence, CISAI 2021 (2021), pp. 553–
557.

[18] I. I. Ceylan, A. Darwiche, and G. van Den Broeck. “Open-world probabilistic
databases: An abridged report”. In: IJCAI International Joint Conference on
Artificial Intelligence (2017), pp. 4796–4800.

[19] I. Ilkan Ceylan, A. Darwiche, and G. van Den Broeck. “Open-world probabilis-
tic databases”. In:Proceedings of the International Conference onKnowledge
Representation and Reasoning (2016), pp. 339–348.

[20] V. Cincotta. “Design and Implementation of a Scalable Probabilistic Database
System”. MA thesis. Università di Genova, 2019.

[21] W. Dai and D. Berleant. “Benchmarking Contemporary Deep Learning Hard-
ware and Frameworks: a Survey of QualitativeMetrics”. In:019 IEEE 1st Inter-
national Conference on Cognitive Machine Intelligence, CogMI 2019 (2019),
pp. 148–155.

[22] N. Dalvi, C. Ré, and D. Suciu. “Probabilistic databases: Diamonds in the dirt”.
In: Communications of the ACM 52.7 (2009), pp. 86–94.

[23] N. Dalvi and D. Suciu. “Management of Probabilistic Data: Foundations and
Challenges”. In: Proceedings of the Twenty-Sixth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems (2007), pp. 1–12.

[24] R. Dattakumar and R. Jagadeesh. “A review of literature on benchmarking”.
In: Benchmarking: An International Journal 10.3 (2003), pp. 176–209.

[25] T.DeVries et al. “Robust record linkage blocking using suffix arrays andbloom
filters”. In:ACMTransactions on KnowledgeDiscovery fromData 5.2 (2011),
pp. 1–27.

[26] D. Dominguez-Sal, N. Martinez-bazan, and V. Muntes-mulero. “Performance
Evaluation, Measurement and Characterization of Complex Systems - Second
TPC Technology Conference, TPCTC 2010, Revised Selected Papers”. In: Lec-
ture Notes in Computer Science (including subseries Lecture Notes in Arti-
ficial Intelligence and Lecture Notes in Bioinformatics) 6417 LNCS (2011),
pp. 25–40.

[27] M. Dylla, I. Miliaraki, and M. Theobald. “A temporal-probabilistic database
model for information extraction”. In: Proceedings of the VLDB Endowment
6.14 (2013), pp. 1810–1821.

References 69

[28] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. “Duplicate RecordDetec-
tion: A Survey”. In: IEEE Transactions on Knowledge and Data Engineering
19 (1 2007).

[29] V. Ercegovac, David J. Dewitt, and R. Ramakrishnan. “The TEXTURE bench-
mark: Measuring performance of text queries on a relational DBMS”. In:
VLDB 2005 - Proceedings of 31st International Conference on Very Large
Data Bases 1 (2005), pp. 313–324.

[30] J. Flokstra, M. van Keulen, and Nikki Zandbergen.wdc data converter. 2022.
URL: https://github.com/utwente-dmb/wdc_pdb (visited on 06/22/2022).

[31] P. V. Freytag and S. Hollensen. “The process of benchmarking, benchlearning
and benchaction”. In: The TQMMagazine 13.1 (2001), pp. 25–33.

[32] L. Fu, G. Salvendy, and L. Turley. “Effectiveness of user testing and heuris-
tic evaluation as a function of performance classifcation”. In: Behaviour and
Infomration Technology 21 (2 2002).

[33] C. J. Gillan et al. “Expediting assessments of database performance for streams
of respiratory parameters”. In: Computers in Biology and Medicine 100.May
(2018), pp. 186–195.

[34] G. Grahne. “Dependency Satisfaction In Databases With Incomplete Informa-
tion”. In: Proceedings of the Tenth International Conference on Very Large
Data Bases (1984), pp. 37–45.

[35] J. Gray. “The Benchmark Handbook for Database and Transaction Systems”.
In:The BenchmarkHandbook forDatabase and Transaction Systems (1993),
pp. 1–15. URL: http://research.microsoft.com/en-us/um/people/gray/
benchmarkhandbook/chapter1.pdf.

[36] S. Gregor and A. R. Hevner. “Positioning and presenting design science re-
search for maximum impact”. In:MIS Quarterly 37.2 (2013), pp. 337–355.

[37] J. Groot Roessink. “inSQeLto: a Query Language for Probabilistic Databases”.
Bachelor’s Thesis. 2021.

[38] M. Hassenzahl, S. Diefenbach, and A. Goritz. “Needs, affect, and interactive
products – Facets of user experience”. In: Interacting with Computers 22
(2010).

[39] M. Hassenzahl et al. “Hedonic and Ergonomic Quality Aspects Determine a
Software’s Appeal”. In: Proceedings of the SIGCHI conference onHuman Fac-
tors in Computing Systems (2000).

[40] T. Hirsch and B. Hofer. “A Systematic Literature Review on Benchmarks for
Evaluating Debugging Approaches”. In: The Journal of Systems & Software
192 (2022), pp. 1–17.

[41] U. Hohenstein and M. Jergler. About the fairness of database perfor-
mance comparisons. Vol. 1255 CCIS. Springer International Publishing, 2020,
pp. 136–156.

https://github.com/utwente-dmb/wdc_pdb
http://research.microsoft.com/en-us/um/people/gray/benchmarkhandbook/chapter1.pdf
http://research.microsoft.com/en-us/um/people/gray/benchmarkhandbook/chapter1.pdf

70 References

[42] T. Imielinski and L.Witold Jr. “Incomplete Information AndDependencies In
Relational Databases”. In:Proceedings of the 1983ACMSIGMOD internation
conference on Management of data (1983), pp. 178–184.

[43] R. Jampani et al. “MCDB: A monte carlo approach to managing uncertain
data”. In: Proceedings of the ACM SIGMOD International Conference on
Management of Data (2008), pp. 687–700.

[44] A. S. Jumde and N. S. Chaudhari. “Query processing techniques in probabilis-
tic databases”. In: (2016), pp. 483–488.

[45] Kaggle Inc. Kaggle. 2010. URL: https://www.kaggle.com/datasets (visited
on 05/23/2022).

[46] C. Koch. “MayBMS: A System forManaging Large Uncertain and Probabilistic
Databases”. In: (2009), pp. 1–34.

[47] C. Koch and D. Olteanu. “Conditioning probabilistic databases”. In: Proceed-
ings of the VLDB Endowment 1.1 (2008), pp. 313–325.

[48] C. Koch et al.MayBMS: A Probabilistic Database System. 2009.

[49] H. Köpcke et al. “Tailoring entity resolution for matching product offers”. In:
ACM International Conference Proceeding Series (2012), pp. 545–550.

[50] L. V. S. Lakshmanan, R. Ross, and V. S. Subrahmanian. “ProbView: A Flexible
Probabilistic Database System”. In: ACM Transactions on Database Systems
22.3 (1997), pp. 419–469.

[51] W. M. Lankford. “Benchmarking: Understanding the Basics”. In: The Coastal
Business Journal 1.1 (2002).

[52] J. Li et al. “Deep cross-platform product matching in e-commerce”. In: Infor-
mation Retrieval Journal 23.2 (2020), pp. 136–158.

[53] R. Likert. “A technique for the measurement of attitudes.” In: Archives of psy-
chology. (1932).

[54] A. Makris et al. “MongoDB Vs PostgreSQL: a comparative study on perfor-
mance aspects”. In: GeoInformatica 25.1 (2021), pp. 241–242.

[55] R. R. Mauritz et al. “A probabilistic database approach to autoencoder-based
cleaning”. In: ACM Journal of Data and Information Quality, Special Issue
on Deep Learning for Data Quality (Jan. 2021). eprint: 2106.09764.

[56] P. H. Meade. “A Guide to Benchmarking”. In: (2007), pp. 4–22.

[57] B. Mozafari et al. “Scaling up crowdsourcing to very large datasets: A case for
active learning”. In:Proceedings of theVLDBEndowment 8.2 (2014), pp. 125–
136.

[58] S. Mudgal et al. “Deep learning for entity matching: A design space explo-
ration”. In: Proceedings of the ACM SIGMOD International Conference on
Management of Data (2018), pp. 19–34.

[59] R. B. Myers and J. R. Herskovic. “Probabilistic techniques for obtaining accu-
rate patient counts in Clinical Data Warehouses”. In: Journal of Biomedical
Informatics 44.SUPPL. 1 (2011), pp. 69–77.

https://www.kaggle.com/datasets
2106.09764

References 71

[60] J. Nielsen.Heuristic Evaluation. John Wiley Sons, Inc., 1994, pp. 25–62.

[61] Oxford Languages. Oxford Dictionary of English. 3rd ed. Oxford University
Press, 2010.

[62] F. Panse,M. van Keulen, andN. Ritter. “Indeterministic handling of uncertain
decisions in deduplication”. In: Journal of Data and Information Quality 4.2
(2013).

[63] F. Panse et al. “Duplicate detection in probabilistic data”. In: Proceedings -
International Conference on Data Engineering (2010), pp. 179–182.

[64] G. Papadakis et al. “Blocking and Filtering Techniques for Entity Resolution:
A Survey”. In: ACM Computing Surveys 53.2 (2020).

[65] R. Peeters et al. “Using schema.org Annotations for Training andMaintaining
ProductMatchers”. In:ACMInternational Conference Proceeding SeriesPart
F1625 (2020), pp. 195–204.

[66] K. Peffers, T. Tuunanen, and M. A. Rothenberger. “A design science research
methodology for information systems research”. In: Journal of Management
Information Systems 24.3 (2007), pp. 45–77.

[67] A. Primpeli, R. Peeters, and C. Bizer. “TheWDC training dataset and gold stan-
dard for large-scale product matching”. In: The Web Conference 2019 - Com-
panion of theWorldWideWeb Conference, WWW2019 (2019), pp. 381–386.

[68] M. Raasveldt et al. “Fair benchmarking considered difficult: Common pitfalls
in database performance testing”. In:Proceedings of theWorkshop onTesting
Database Systems, DBTest 2018 (2018).

[69] S.Ray, B. Simion, andA.D. Brown. “Jackpine: Abenchmark to evaluate spatial
database performance”. In: Proceedings - International Conference on Data
Engineering (2011), pp. 1139–1150.

[70] C. Ré and D. Suciu. “Management of Data with Uncertainties”. In: 16th ACM
Conference on Information and Knowledge Management (2007), pp. 3–7.

[71] K. van Rijn. “A Binary Decision Diagram based approach on improving Prob-
abilistic Databases”. Bachelor’s Thesis. University of Twente, 2020.

[72] P. Ristoski et al. “A machine learning approach for product matching and cat-
egorization”. In: Semantic Web 9.5 (2018), pp. 707–728.

[73] J. Schoenfisch and H. Stuckenschmidt. “Analyzing real-world SPARQL
queries and ontology-based data access in the context of probabilistic data”. In:
International Journal of Approximate Reasoning 90 (2017), pp. 374–388.

[74] P. Sen, A. Deshpande, and L. Getoor. “PrDB: Managing and exploiting rich
correlations in probabilistic databases”. In: The VLDB Journal 18.5 (2009),
pp. 1065–1090.

[75] S. M. A. Shah et al. “Robustness Testing of Embedded Software Systems: An
Industrial Interview Study”. In: IEEE Access 4 (2016).

[76] A. Souihli and P. Senellart. “Optimizing approximations of DNF query lineage
in probabilistic XML”. In: Proceedings - International Conference on Data
Engineering (2013), pp. 721–732.

72 References

[77] Statista. Ranking of the most popular relational database management sys-
tems worldwide, as of January 2022. 2022. URL: https://www.statista.
com/statistics/1131568/worldwide- popularity- ranking- relational-
database-management-systems/ (visited on 05/06/2022).

[78] M. Stonebraker and L. A. Rowe. “The Design of POSTGRES”. In: ACM SIG-
MOD Record 15.2 (1986), pp. 340–355.

[79] P. E. Strandberg et al. “Instrument from: Test Results Communication – An
Interview Study in the Embedded Software Industry”. In: (2018).

[80] J. C. Strauss. “A benchmark study”. In: Fall Joint Computer Conference. 1972,
pp. 1225–1233.

[81] S. S. Tee, T. S. M. T.Wook, and S. Zainudin. “User Testing forMoodle Applica-
tion”. In: International Journal of Software Engineering and its Applications
7 (5 2013).

[82] The PostgreSQL Global Development Group. PostgreSQL. 1996. URL: https:
//www.postgresql.org/ (visited on 05/06/2022).

[83] The PostgreSQL Global Development Group. PostgreSQL 14.2 Documenta-
tion. 2022.

[84] University of Twente. Ethics Committee Computer & Information Systems.
2023. URL: https://www.utwente.nl/en/eemcs/research/ethics/ (visited
on 04/14/2023).

[85] M. Q. T. P. van der Arend, J. F. Beerten, and M. van Keulen. “Benchmarking
MayBMS based on hardware specifications and query complexity”. In: 2020.

[86] M. van Keulen. “Probabilistic Data Integration”. In: Encyclopedia of Big Data
Technologies (2019), pp. 1308–1315.

[87] M. van Keulen and A. De Keijzer. “Qualitative effects of knowledge rules and
user feedback in probabilistic data integration”. In:VLDBJournal 18.5 (2009),
pp. 1191–1217.

[88] M. van Keulen and J. Flokstra. DuBio. 2019. URL: https : / / github . com /
utwente-db/DuBio (visited on 05/03/2022).

[89] M. van Keulen et al. Rule-based conditioning of probabilistic data. Vol. 11142
LNAI. Springer International Publishing, 2018, pp. 290–305.

[90] B. Wanders, M. van Keulen, and P. van der Vet. “Uncertain groupings: Proba-
bilistic combination of grouping data”. In: Lecture Notes in Computer Science
9261.September 2015 (2015), pp. 236–250.

[91] B. Wanders and M. van Keulen. “Revisiting the formal foundation of Prob-
abilistic Databases”. In: Proceedings of the 2015 Conference of the Interna-
tional Fuzzy Systems Association and the European Society for Fuzzy Logic
and Technology 89 (2015).

[92] B. Wanders, M. van Keulen, and P. van der Vet. “Uncertain groupings: Proba-
bilistic combination of grouping data”. In: Lecture Notes in Computer Science
(including subseries LectureNotes inArtificial Intelligence andLectureNotes
in Bioinformatics) 9261 (2015), pp. 236–250.

https://www.statista.com/statistics/1131568/worldwide-popularity-ranking-relational-database-management-systems/
https://www.statista.com/statistics/1131568/worldwide-popularity-ranking-relational-database-management-systems/
https://www.statista.com/statistics/1131568/worldwide-popularity-ranking-relational-database-management-systems/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.utwente.nl/en/eemcs/research/ethics/
https://github.com/utwente-db/DuBio
https://github.com/utwente-db/DuBio

References 73

[93] Web Data Commons. Training Dataset and Gold Standard for Large-Scale
Product Matching. 2018. URL: http://webdatacommons.org/largescalepr
oductcorpus/v2/ (visited on 05/17/2022).

[94] J. Widom. “Trio: A system for integrated management of data, accuracy, and
lineage”. In: 2nd Biennial Conference on Innovative Data Systems Research
(2005), pp. 262–276.

[95] R. J. Wieringa. Design science methodology. 2014, pp. 1–332.

[96] M. Wilke and E. Rahm. “Towards Multi-Modal Entity Resolution for Product
Matching”. In: CEURWorkshop Proceedings 3075 (2021).

[97] S. Yan et al. “Adaptive sorted neighborhood methods for efficient record link-
age”. In: Proceedings of the ACM International Conference on Digital Li-
braries (2007), pp. 185–194.

[98] N. Zandbergen.QuestionMark: TheDataset Generator. 2022. URL: https://
github.com/utwente-db/QuestionMark/tree/thedatasetgenerator (visited
on 06/25/2023).

[99] N. Zandbergen. QuestionMark: The Probabilistic Benchmark. 2022. URL: h
ttps://github.com/utwente-db/QuestionMark/tree/theprobabilisticbe
nchmark (visited on 06/25/2023).

[100] Z. Zhang et al. “MWPD2020: Semantic web challenge on mining the web
of html-embedded product data”. In: CEUR Workshop Proceedings 2720
(2020).

http://webdatacommons.org/largescaleproductcorpus/v2/
http://webdatacommons.org/largescaleproductcorpus/v2/
https://github.com/utwente-db/QuestionMark/tree/thedatasetgenerator
https://github.com/utwente-db/QuestionMark/tree/thedatasetgenerator
https://github.com/utwente-db/QuestionMark/tree/theprobabilisticbenchmark
https://github.com/utwente-db/QuestionMark/tree/theprobabilisticbenchmark
https://github.com/utwente-db/QuestionMark/tree/theprobabilisticbenchmark

A
The QuestionMark

Probabilistic Benchmark

Note: this appendix contains the product manual provided with the QuestionMark
software. As this manual is developed as a standalone product, the content in this
appendix partially overlaps with the content from the thesis.

Welcome to the QuestionMark manual. This document provides additional details on
the benchmark, as well as a roadmap on how to use it and adapt it for own use. The
scientific substantiation of this benchmark can be found in the accompanying thesis1.

Figure A.1: The QuestionMark logo

As there is no standard available for benchmarking probabilistic databases, Question-
Mark aims to cover a wide range of aspects of the tested probabilistic database man-
agement system (DBMS). This benchmark provides a convenient way to test various
probabilistic database management systems and get insights on their performance.
Since the queries provided in this benchmark are written in a pseudocode like lan-
guage, queries can easily be translated to any probabilistic query dialect. Additionally,
it provides clear guidance on how the parameters can be adapted to approach any

1Zandbergen, N. (2023)QuestionMark: Designing a benchmark for probabilistic databases. M.Sc.
Thesis, University of Twente.

75

76 Appendix A. The QuestionMark Benchmark for Probabilistic Databases

real-world application as close as possible. QuestionMark © 2023 by the University
of Twente is licensed under Attribution 4.0 International

For the benchmark, two Python programs have been developed. Both these programs
— The Dataset Generator and The Probabilistic Benchmark — need to be run to ex-
ecute the benchmark. Section A.1 describes the dataset generator. Section A.2 de-
scribes the benchmark. The step by step instructions provided in this manual can also
be found in MANUAL.md in the respective python program. This benchmark natively
supports the probabilistic database management systems MayBMS and DuBio. Run-
ning the benchmark with any other probabilistic DMBS requires manual adaptation
of these programs. More details on how to do this are provided in the QuestionMark
Python programs and in Section A.6.

If you want to use this benchmark, allow for a total running time of three to eight
hours, depending on the dataset size and included uncertainty. The benchmarking
procedure consists of the following phases:

1. (approx. 60 minutes). Reading through this manual and understanding the
product.

2. (30 to 180 minutes). Running QuestionMark: The Dataset Generator.

3. (30 to 90 minutes). Running QuestionMark: The Probabilistic Benchmark.

4. (approx. 60 minutes). Digesting the results and drawing conclusions.

When adding a new non-supported DBMS, the implementation of changes require
an additional fifteen hours. Including a new non-supported non-PostgreSQL based
DBMS, another additional fifteen hours should be taken into account.

A.1. QuestionMark: The Dataset Generator
QuestionMark: The Dataset Generator is a Python program that generates the dataset
required for running QuestionMark: The Probabilistic Benchmark. This program can
be downloaded from

https://github.com/utwente-db/QuestionMark/tree/thedatasetgenerator

This dataset generator prepares the dataset required for running the benchmark test.
During the dataset generation phase, a dataset is produced that approaches the real-
world scenario for which this benchmark is run. For this, parameters can be tuned.
This program follows the general product matching workflow, which is as follows.

1. Data Preparation. The data is standardised and cleaned. A uniform data struc-
ture is applied.

2. Search Space Reduction. Since the time needed for evaluating all possible com-
binations grows exponentially with the dataset size, the search space for possible
matches needs to be reduced to allow for efficient matching.

3. Attribute Value Matching. The similarity of the remaining data tuples is de-
termined using a syntactic and semantic means, which produces a comparison
vector per data attribute.

A.1. QuestionMark: The Dataset Generator 77

4. Classification. A decision model then determines the similarity score of a data
tuple. This score is compared to the set thresholds to determine whether it is a
matching tuple, possibly matching tuple, or non-matching tuple.

5. Verification. The performance of the applied product matching algorithm can
be verified using standard performance metrics.

A.1.1. The Dataset Generator Roadmap
After having downloaded the program from GitLab, the generation of the probabilis-
tic dataset can begin. When completing the listed steps, the dataset required to run
QuestionMark: The Probabilistic Benchmark is obtained.

1. Downloading the WDC datasets. First, the base dataset should be downloaded.
For additional details on this dataset, see Section A.1.2. To include this dataset
in the program, create an empty folder datasets in the main project repository.
Next, go to the WDC dataset website, scroll to the bottom of the page and down-
load offers_corpus_english_v2.json.gz and all_gs.json.gz. Include these
in the empty datasets folder. If desired, you could also download the samples
from the WDC dataset website to get an impression of the dataset.

2. Preparing the dataset generator. To create a dataset that approaches a given
real-world scenario as much as possible, first the parameters of the generator
need to be set. For an explanation on these parameters, see Section A.1.3. When
these parameters are set, a database connection should be established. The
database of choise should be running and accepting connections. To connect
QuestionMark: The Dataset Generator to your database, create a new file called
database.ini and fill in the credentials according to the defined structure in
database.ini.tmpl. QuestionMark: The Probabilistic Benchmark is created
with PostgreSQL-based Database Management Systems in mind. In case the
DBMSyouwant to benchmark is not PostgreSQL-based, please see SectionA.6.2.
If youwant to benchmark a system other thanDuBio orMayBMS, please see Sec-
tion A.6.1.

3. Running QuestionMark: The Dataset Generator. Once the preparations are
done, the dataset generation can begin. To run the benchmark, go tomanual.py
and run the script.

4. What the benchmark does. During the process of generating the dataset, several
phases will be passed. If it is indicated that a smaller dataset will be used, this
new dataset is produced first. To do this, a pseudo-random selection of offers
is chosen from the dataset. This ensures that the same dataset will be produced
each time the benchmark is run on a specific size. Next, this dataset is sorted
and a dictionary is created for easy lookup. The offers present in the dataset are
then put in blocks. For this, two blocking algorithms are available. First creating
blocks reduces the time required to evaluate if offers should be put in the same
cluster. More information on this process can be found in Section A.1.4. After
the blocks are created, all offers in a block arematched and providedwith a prob-
ability score. This probability indicates the likelihood that the offer belongs in
a cluster, and whether its attributes are likely the correct ones. More informa-

http://webdatacommons.org/largescaleproductcorpus/v2/index.html

78 Appendix A. The QuestionMark Benchmark for Probabilistic Databases

tion on this process can be found in Section A.1.5. When the clusters are created,
a database representation is created and the offers are added to a probabilistic
DBMS. Finally, some preparatory queries are run.

5. Continue with benchmarking. The dataset is prepared! Go to QuestionMark:
The Probabilistic Benchmark to continue with benchmarking. Optionally, per-
formance tests could be run before continuing the benchmarking process.

6. Running performance tests. QuestionMark: The Dataset Generator also comes
with a performance evaluator. This evaluator can aid in setting the parameters
correctly, such that the produced dataset approaches that of the real-world as
closely as possible. Several performance tests have already been run. Open
performance/performance.txt to get insights into the behaviour of the param-
eters and the performance of the implemented algorithms. To run the per-
formance tests, set the performance parameter to true and run the script in
manual.py again.

A.1.2. WDC Product Data Corpus and Gold Standard
This program digests the WDC Product Data Corpus and Gold Standard for Large-
Scale Product Matching, Version 2.0 to generate a probabilistic dataset from it. The
WDC dataset is a large public training dataset for product matching. It is produced
by extracting schema.org product descriptions from 79 thousand websites, which pro-
vides 26 million product offers. Besides the full dataset, an English language subset is
offered. This subset consists of 16million product offers. This dataset is providedwith
a clustering. The 16 million product offers in the English subset are categorized in 10
million clusters. Each cluster contains offers of the same product found on different
websites. There are roughly 8.5 million clusters with size 1, one million clusters with
size 2, and 400.000 clusters with size 3 or 4. Clusters of a size greater than 80 are
filtered out of the dataset, as these are likely noise.

For this benchmark, an adaptation of the English subset is used. The dataset was
adapted to include a probabilistic clustering. More information on the dataset and
details on why this dataset was chosen can also be found in the accompanying thesis.

A.1.3. Dataset Generator Parameters
During the dataset generation phase, there are multiple parameters that can be
tweaked. The different parameters and their effect on the resulting dataset are listed
below. In order to fit the benchmark to the requirements of a specific application, it
should be tailored to represent this real-world scenario as closely as possible. This
can be done by tweaking the various parameters of this benchmark. The parameters
‘dataset size’ and ‘upper phi and lower phi’ have a high influence in the extent to which
the produced dataset resembles the real-world application for which this benchmark
test is run.

• DBMS. Determines into which database management system the generated
dataset should be loaded and what preparatory queries need to be run.

• Dataset size. Determines the amount of offers included in the dataset. A per-
centage of the dataset can be determined to two decimal places. The offers for

http://webdatacommons.org/largescaleproductcorpus/v2/index.html
http://webdatacommons.org/largescaleproductcorpus/v2/index.html

A.1. QuestionMark: The Dataset Generator 79

the new smaller dataset are pseudo-randomly chosen, so that the same dataset
is returned for multiple runs. This ensures reproducibility of the results. The
full dataset contains 16 451 499 offers. The smallest dataset that can be gener-
ated is 0.01% of the full dataset, which produces an initial dataset of 1653 offers.
Choose this value to generate a dataset with a size similar to that of the dataset
being digested by the real-world application.

• Whole clusters. Determines whether the offers chosen from the larger dataset
to include in the new smaller dataset are pulled from entire clusters or not. In-
cluding entire clusters increases the uncertainty of the data.

• Word distancemeasure. Determines themanner in which the distance between
two words or sentences is calculated. This measure is used during the blocking
phase on the attributes determined as Blocking Key Values and on all suitable
attributes during the matching phase. The implemented distance measures are
Levenshtein, Jaro, Jaro-Winkler, Hamming and Jaccard.

• Blocking key values. Determines the attributes that are included to determine
the similarity of two offers during the blocking phase. Includingmore attributes
provides a better blocking performance, but at the cost of a higher runtime.

• Blocking similarity threshold. Value between 0 and 1 that represents the dis-
tance between two offers. Evaluated offers with a distance lower than the thresh-
old are included in the same block.

• Blocking window size. Determines the size of the sliding window. Within a
window, the distance between the first and last offer is determined. This value
influences the runtime.

• Maximum block size. Poses a restriction on the block size. Increasing this value
improves the performance. As the matching phase includes a calculation with
factorial time complexity, this size should not exceed six. Five is advised.

• Matching attributes. Determines the attributes that are used to obtain the dis-
tance between two offers during the matching phase. Including more attributes
improves the performance, but increases the runtime.

• Matching attribute weights. Determines the weight of each attribute to calcu-
late the final distance score. This can be tweaked to improve the performance.
It has no effect on the runtime.

• Upper phi and Lower phi. Determines the upper and lower threshold of the dis-
tance measure. If the distance between two offers is greater than the upper phi,
the two offers are certainly not the same product. If the distance is smaller than
the lower phi, the two offers are certainly the same. Increasing the gap between
the values ensures less false matches or non-matches, but increases the compu-
tational complexity in later phases and during querying. A smaller gap can be
used to artificially reduce the uncertainty in the dataset. This value should be
carefully chosen, as this influences to what extent the produced dataset imitates
the data being digested by the real-world application.

80 Appendix A. The QuestionMark Benchmark for Probabilistic Databases

A.1.4. Blocking Algoritm
To obtain a time-efficient product matching, the search space for matching pairs
should be reduced. Disregarding this step results in quadratic time complexity dur-
ing the productmatching phase. Having 16million products in the dataset, this step is
thus essential for a time-efficient productmatching. For this step, filtering or blocking
can be used. QuestionMark: The Dataset Generator makes use of a blocking algoritm.

A selection of two Rule-Based Blocking techniques was implemented on the dataset
to verify which algorithm performed best. These are Incrementally-Adaptive Sorted
Neighborhood (ASN) and Improved Suffix Array (ISA) Blocking. Tests executed using
the implemented performance evaluator indicate that ASN is the best blocking algo-
rithm for the dataset used. The ISA algoritm is still available for use.

The ASN blocking algoritm works by sliding a window to roughly determine what of-
fers are possible matches. For this, a sorted dataset is required. During each iteration
of the algoritm, a block is created. The sliding window is placed at the first offer from
the sorted list that is not yet in a block. When the start of the window is set, the en-
largement phase is entered. During this phase, the window will iteratively increase in
size. This is a fixed increase. After each iteration, the blocking algorithm determines
the similarity score of the first and last offer in the window. If the distance between
the two offers is smaller than the set threshold, the window is enlarged and a new simi-
larity score is determined. If the distance is higher, the retrenchment phase is entered.
During the retrenchment phase, the sliding window will decrease one offer in size and
calculate the similarity score between the first offer in the window and the new last
offer. Once the similarity score rises above the threshold, the block is created.

A.1.5. Matching Algoritm
During this phase, either an algorithm based approach or a machine learning based
approach could be used. When product matching with either approach, the matching
can be performed only on the product title or on all available information, i.e. includ-
ing the product attributes. Only using the product title provides simplicity and speed,
but at the cost of a lower precision.

For QuestionMark: The Dataset Generator, the Attribute-Based Entity Resolution ap-
proach is used as the foundation of the implementation. For this research, a compari-
son vector is generated from all attributes of an offer. Within each block, all possible
offer combinations are generated and the distance between these offers is then pro-
vided by the vector. For simplicity, this vector is combined to a single distance score.
The weight of each attribute for this final score is adaptable.

As the benchmark designed in this research is based on probabilistic data, an addi-
tional layer had to be build on top of the basic algorithm to include a probabilistic
model in the final clustering. The creation of the various probabilistic clusters is based
on the possible worlds model. For each block, a matching graph is created and the
matching score of each edge is evaluated. Blocks containing only a single offer are
always true, so are submitted to a cluster directly. When a block contains multiple
offers, their matching score is evaluated. Here exists three possibilities:

• the matching score of their edges all lie above the upper threshold;

A.2. QuestionMark: The Probabilistic Benchmark 81

• the matching score of their edges all lie below the lower threshold;

• there are one or multiple edges between the two thresholds.

In the first case, the cluster is certain; there is only one possible world. In this case
the full block becomes a new cluster. There does exist uncertainty between the correct
value of the attributes, as these are likely different. In the second case, the cluster
is also certain, as all offers are certainly different. In this case, each offer is put in a
separate cluster. In the final case, world graphs should be constructed of the possible
worlds. The amount of possible worlds created equals 2n where n equals the amount
of offers connected by an uncertain edge. When these world graphs are created, the
inconsistent worlds are removed and the remaining worlds are included as different
options for the same cluster. If an offer is certainly present in all worlds, this offer
is added later to all generated world graphs. If an offer is certainly not present in all
worlds, a separate cluster is created.

For the creation of the possible worlds, a naive implementation is used based on the
theory presented in the accompanying thesis. Because of that, the space complexity
for the creation of the possible worlds is factorial. This imposes a limit on the block
size that can be digested by this algorithm. This imposes a maximum of six offers per
block.

A.2. QuestionMark: The Probabilistic Benchmark
QuestionMark: The Probabilistic Benchmark is a Python program that runs a bench-
mark test for any probabilistic database management system. This program can be
downloaded from

https://github.com/utwente-db/QuestionMark/tree/theprobabilisticbenchmark

This benchmark uses the dataset generated using QuestionMark: The Dataset Gener-
ator. Again, if a DBMS will be used that is not natively supported, the program needs
to be adapted to allow its support. For this, see Section A.6.

A.2.1. The Probabilistic Benchmark Roadmap
After having downloaded the program from GitLab, the benchmark execution can be-
gin. To properly run the benchmark, the following steps need to be followed. It is
assumed that the process of QuestionMark: The Dataset Generator has been finished
successfully and the dataset is available in a Database Management System that is
accepting connections.

1. Prepare the benchmark. To connect to the dataset generated by QuestionMark:
The Dataset Generator, create a file called database.ini and fill enter the cre-
dentials according to the defined structure in database.ini.tmpl. Then, the pa-
rameters for running the benchmark must be set. For an explanation on these
parameters, see Section A.2.2. Again, if a newDBMSor a non-PostgreSQL based
DBMSwill be benchmarked, please follow the steps listed in Section A.6. To test
the connection to the database, set the parameter test to True. Remember to
set this value to False before running the benchmark test.

82 Appendix A. The QuestionMark Benchmark for Probabilistic Databases

2. Run the benchmark. The benchmark is now fully prepared to be run. To run
the benchmark and obtain the results, go to manual.py and run the script. For
additional details on the queries included in the benchmark, see Section A.3.

3. Reading the results. When the benchmark execution is finished, the results can
be viewed. The benchmark results are stored in QM_metric_ results.txt and
QM_query_results.txt. Both files provide insights into the performance of the
tested benchmark. For more instructions on how to digest and interpret the
results, see Section A.4.

A.2.2. Benchmark Parameters
During the benchmarking process, there are also parameters that can be tweaked. The
parameters during this phase are mostly related to the DBMS used and the function-
ality coverage of the benchmark.

• DBMS. Determines the database management system that will be used for the
execution of the benchmark. Additional systems can be added when support for
them is also added to the benchmark program.

• Iterations. Denotes the amount of times a query is run to obtain a runtime av-
erage from the queries. This is a global variable that is used for all queries. In-
creasing this number will provide a more precise outcome of the average run
time, but at the cost of a longer benchmark execution time. The total amount of
iterations is always +1 to create a warm start.

• Show Query Plan. Boolean value. If true, the query plan for each query is also
provided with the benchmark result. Enabling this variable does not influence
the execution time of the queries.

• Timeout. Ensures that queries that take too long to return an answer will be
aborted. Once a query times out, this will be noted in the benchmark result
and the next query is started. The current implementation abruptly stops the
benchmark execution.

• Queries. A list that contains all queries from the benchmark. Depending on the
goal of the benchmark run, queries that are not relevant can be removed from
the benchmark run. Removing queries lowers the total time required to run
the benchmark and focuses the results to what is important. The benchmark
can also be run in several iterations, as to create several smaller, more focused
benchmark results.

A.3. Benchmark Queries
This section discusses the queries included in the benchmark. The list of queries in-
cluded in the QuestionMark benchmark can be found in Appendix A.7.

A.3.1. Queries
QuestionMark: The Probabilistic Benchmark offers a range of queries that can be used
to test various types of systems. The queries are selected to cover the diverse possibil-
ities of the dataset, but also include functionalities that are key to some more well-

A.3. Benchmark Queries 83

known probabilistic database management systems. The queries are sub-divided into
queries that provide insight into the dataset, probabilistic queries that could be run
more frequently and insert-update-delete queries. The table below provides a quick
overview of the included queries.

test 1 Simple query to test the connection.
insight 1 Retrieves the full dataset, gain insight in data structure and

load handling.
insight 2 Provides insight into the dataset and probability handling.
insight 3 Provides insight into the distribution of cluster volumes.
insight 4 Gets the percentage of certain clusters.
insight 5 Gets the id and probability of the offers with a specific vari-

able value or sentence.
insight 6 Gets the average probability of the dataset.

probabilistic 1 Gets offers with the probability of their occurrence.
probabilistic 2 Gets the expected count of the categories.
probabilistic 3 Gets the expected sum of the product ids per cluster.
probabilistic 4 Gets the sentence and probability per category.
probabilistic 5 Returns themost probable offer that is related to a specified

string.
probabilistic 6 Returns all offers containing a specified string with a high

uncertainty so these can be classified by human inspection.
insert update delete 1 Inserting a single row.
insert update delete 2 Inserting bulk.
insert update delete 3 Updates uncertainty.
insert update delete 4 Removes uncertainty.
insert update delete 5 Deletes a cluster.

A.3.2. Altering Queries
The queries presented in this benchmark are already translated and included in Ques-
tionMark: The Probabilistic Benchmark in the dialects of DuBio andMayBMS. Please
note that these query implementations are written with a dataset of 0.01% size. When
producing a dataset of a different size, it could happen that the clusters used in those
queries are not present in the produced dataset. It is thus of importance to always
check the queries before running the benchmark. The following queries require spe-
cial attention:

• Query insight 5. This query requires a specific variable or sentence to be defined.
You could either define one that does not exist in the database, or choose one that
does exist.

• Queries probabilistic 5 and probabilistic 6. This query uses pattern matching
to obtain a selection of offers that satisfy that pattern. It is advised to query for
anything that exists in the dataset.

• Query insert, update, delete 3. This query requires a specific cluster to be de-
fined. Seek for any cluster of size four. Include its ID in the query and change
the probability with variables accordingly.

84 Appendix A. The QuestionMark Benchmark for Probabilistic Databases

• Query insert, update, delete 4. This query should also be run on any cluster of
size four. Include the ID of each offer present in that cluster in one of the four
queries. Include the cluster ID in the probability variables.

• Query insert, update, delete 5. This query removes a cluster. Search for a cluster
with a sufficiently large size and include its ID. With the current limitations, a
cluster with the largest size is advised.

• Queries timing out. During the benchmarking, it could happen that queries take
too long to return an answer. In that case, the query is timed out. To verify
whether the functionality of the query is supported, change the query to run on
the ’part’ table. This part table contains a small portion of the dataset. If the
query still times out with this table, it could be worthwhile to decrease the size
of this table even further. To do this, go to QuestionMark: The Dataset Gen-
erator and open database_filler_[DBMS].py. Then reduce the value in LIMIT
FLOOR() in the first query of prep_queries.

• Queries raising exceptions. During the benchmarking, it could also happen
that queries throw errors. When any query raises the exception invalid
memory alloc request size 1073741824 or Ran out of memory retrieving
query results, it can also be worthwhile to run the query on the ’part’ table.
Most likely, reducing the dataset size that the query needs to digest removes
this specific error. This verifies whether the functionalities in the query are sup-
ported by the system or not. It is worthwhile so remain critical when errors are
thrown, sometimes a workaround can be found to still find a fix. Another option
is to run the query on a database tool, as it could be that theDBMS cannot handle
some requests from psycopg2.

A.4. Produced Results
After running QuestionMark: The Probabilistic Benchmark it is time to analyse the
produced results. The benchmark provides information about the benchmark through
the following metrics:

• The brevity of the query dialect.

• The query functionality coverage.

• The runtime of the queries.

• The probabilistic data overhead.

• The user friendliness of the system.

The benchmark produces two files when run: QM_metrics_results.txt and
QM_query_results.txt. These two files contain the raw metric values that can be di-
gested to obtain valuable information from. The metrics provide information on the
effectiveness, efficiency and appeal of the tested software. QM_metrics_results.txt
provides the raw data of fourmetrics in themain results part and provides an overview
of all errors thrown while running the benchmark. If no errors were thrown, nothing
will be printed and only themain part is visible. In QM_query_results.txt, all queries,
their results, and their execution time are shown.

A.4. Produced Results 85

A.4.1. Metrics
The benchmark thus produces data for five metrics. This section provides additional
details on each of these metrics.

Brevity of the query dialect. This metric is determined by the total amount of
characters needed for all queries and gives insights into the succinctness of the query
language. A more succinct query dialect often requires less time to write queries with
and is often easier to understand. This metric value is obtained by iterating over all
queries and adding their character count. Spaces are removed from the calculation.
Optionally, characters can be removed from specific queries. For example in query
IUD_1_rollback offers are added to the database. As the data that represents the offer
is not indicative of the complexity of the query language, the amount of characters used
for that representation is subtracted from the total character count for that query.

Query functionality coverage. This metric provides insight into the functional-
ity coverage of the database system and is determined by multiple sub-metrics. When
running the queries to obtain their results and runtime, it can happen that a specific
functionality is not supported or the database system cannot handle the load required
to execute the query. In these cases, the system returns an error. The error raised
during execution are stored and printed as the query result. After the benchmark ex-
ecution has finished, an overview table is created that indicates what queries finished
execution and which threw an error. The percentage of successful queries is then also
determined. For each query that threw an error, it also indicates what query function-
alitymight be lacking. In each case, a critical look is needed to verify whether the error
is thrown due to an actual lack of functionality support or due to another reason, for
example a typo. With the gathered knowledge, the functionality coverage table can
be manually filled in. In this table, a distinction is made between functionality that
is natively supported and functionality that can be implemented with a workaround
method

Runtime of queries. This metric provides insight into the speed of query execution.
A lower runtime is required to obtain higher query throughput rates and improves the
flow of business processes relying on the query results. This metric is also obtained
by a combination of sub-metrics. To obtain the runtime of a query, the PostgreSQL
EXPLAIN ANALYSE statement is used. This statement returns the execution plan of var-
ious queries or statements and tracks its runtime. When available, it differentiates
between the planning time and execution time of a query. In this distinction is not
supported by the DBMS, only a total runtime is returned. For each query, the aver-
age runtime over the specified iterations is printed. Each query is run with a warm
start. After all benchmark queries have run, a total average planning time and execu-
tion time, or total average runtime is calculated. This is the sum of all time averages
of all queries. The total time provides a quick idea of the speed of the tested DBMS.
For each application scenario, the acceptable runtime of a query differs. It is thus ad-
vised to verify the significance of the queries and per query determine the acceptable
runtime.

Probabilistic data overhead. This metric represents the additional storage space
required to store the probabilistic representation of the data. When processing large

86 Appendix A. The QuestionMark Benchmark for Probabilistic Databases

volumes of data, needing additional storage space to store the probabilistic represen-
tation of the data could get costly. As each probabilistic DBMS stores their probabilis-
tic representation in a unique way, the probabilistic data overload is calculated for
each DBMS differently. For both systems, the storage space used is determined by
the pg_size_pretty statement of PostgreSQL. For DuBio, the overhead percentage is
determined using the following calculation:

sentence+ dictionary

offers+ dictionary
× 100

Here, sentence is the size _sentence column in the offers table, dictionary is the size
of the _dict table, and offers is the size of the offers table.

For MayBMS, the following calculation is used to determine the overhead percentage:

setup× (1− distinct ids count
ids count

) + (offers− setup)

offers
× 100

Here, setup is the size of the offers_setup table, distinct_ids_count is the count of
all distinct values of the id column in the offers table, ids_count is the count of all
values of the id column in the offers table, and offers is the size of the offers table.

The calculation forMayBMS is a bit more complex, asMayBMS does not create a com-
pact representation of the probability space over a single offer. Because of that, data
duplication is created in the offers table. The overhead that this duplication creates is
determined by counting the id values.

User friendliness. User friendliness is another metric that is composed from sev-
eral sub-metrics. As user friendliness is something of a more personal taste and can-
not be measured from a benchmark run, all sub-metrics are in the form of statements
that should be rated on a scale from 1 to 5, 1 meaning that the statement is not true,
an 5 meaning that it is very much true. The following aspects should be evaluated to
determine a final user friendliness score of the system:

[1, 2, 3, 4, 5] The software is well documented.
[1, 2, 3, 4, 5] The software was easy to work with.
[1, 2, 3, 4, 5] We have sufficient in-house expertise to workwell with the software.
[1, 2, 3, 4, 5] I am satisfied with the monetary expenses that need to be made for

running the software.
[1, 2, 3, 4, 5] The software has a support service.

A.5. Digesting the Results 87

A.5. Digesting the Results
To digest the raw metrics provided by the benchmark and obtain useful information
from them, the benchmark performance is categorised in terms of its effectiveness,
efficiency and appeal. please follow the instructions below to digest the raw results
and gain insights into the performance of the system.

A.5.1. Effectiveness
The effectiveness of the software relates to the quality of fulfilling the purpose. To
obtain a complete picture about the effectiveness of the tested software, both gener-
ated files should be considered. To obtain a global picture on the effectiveness of the
software, open QM_metrics_results.txt. Here, the metric ‘percentage of successful
queries‘ is of importance. Ideally, this value will be 100%. If this is not the case, errors
have been thrown during the benchmarking process. These errors are displayed at the
bottom of the file. For each error, verify if it is thrown due to a lack of functionality
support, or due to other reasons, such as programming or memory errors. If the error
is due to any of the other reasons, try to eliminate these and run the query again. Keep
track of the following information when altering queries that have thrown an error:

Fix log #

Query that raised an exception:

Prior adaptations done on the query:

Exception raised by the query:

Suspected cause of the exception:

Implemented fix:

If any error cannot be fixed, the functionality that is required is lacking in the tested
software. In the errors overview, a list of possible functionality gaps is listed below
each error. Verify if the error is caused by any of these and note the missing func-
tionality. With this, the coverage of query functionality can be identified. Below is a
list of the functionalities that are identified. This list can be expanded when different
functionalities are of importance.

As a final step, open QM_query_results.txt and verify the results returned by the
queries. This step is optional, as there is no truth table provided with the benchmark.
If anything strange is shown, verify if the tested software is performing badly.

88 Appendix A. The QuestionMark Benchmark for Probabilistic Databases

Native Possible Functionality
1 [] [] Support of most recent deterministic DBMS queries
2 [] [] Offering a compact representation of the present uncer-

tainty
3 [] [] Get the probability of an offer
4 [] [] Get the probability of a composed result
5 [] [] Apply aggregate functions on probabilities
6 [] [] Filtering on probability
7 [] [] Get the expected count
8 [] [] Get the expected sum
9 [] [] Get the most probable answer
10 [] [] Verify if a specific possible world exists
11 [] [] Verify if a record is certain
12 [] [] Updating the uncertainty of an offer
13 [] [] Repair the probability space after addition, update or

deletion of offers
14 Any anomalies discovered during benchmarking

The following table can be used as a guide to see what queries require what function-
ality:

Functionality Queries
1 Support ofmost recent deterministic DBMS queries Any
2 Offering a compact representation of the present un-

certainty
Insight 2

3 Get the probability of an offer Probabilistic 1
4 Get the probability of a composed result Insight 5; Insight 6;

Probabilistic 4
5 Apply aggregate functions on probabilities Insight 4; Probabilistic 4
6 Filtering on probability Probabilistic 6
7 Get the expected count Probabilistic 2
8 Get the expected sum Probabilistic 3
9 Get the most probable answer Probabilistic 5
10 Verify if a specific possible world exists Insight 5
11 Verify if a record is certain Insight 4
12 Updating the uncertainty of an offer Insert, Update, Delete 3
13 Repair the probability space after addition, update

or deletion of offers
Insert, Update, Delete 1;
Insert, Update, Delete 4

14 Any anomalies discovered during benchmarking Any

A.5.2. Efficiency
The efficiency of the software relates to its use of resources and execution speed. To ob-
tain a complete picture of the efficiency of the testes software, several metrics should
be evaluated. The most prominent efficiency metric is the speed of the tested soft-
ware. The speed of the software can be collected by both the total average execution
time and the time per query. The desired speed is fully dependent on your require-

A.5. Digesting the Results 89

ments. If specific types of operations are most important for the real-world software,
open QM_query_results.txt and verify if the queries containing that functionality
have an acceptable execution time. A visual representation of the execution times
of the queries can be found in results/graphs/QM_graph_runtime.png. To ensure a
clear presentation of the visual results, it might be beneficial to run the benchmark
over several subsets of queries. One could, for example, make a separate fun for all
insert, update and delete statements, or remove all queries with a significantly higher
execution time.

Another indication of efficiency is the amount of characters needed for the queries.
It is your decision if this metric is of importance. This metric is also related to the
appeal of the software. Query dialects that require more characters are possibly
more difficult to understand and possibly require more time to define queries with.
For this sub-metric, also a visual representation is included. This can be found in
results/graphs/QM_graph_runtime.png. Again, if the produced graph is hard to read
it might be beneficial to run the benchmark over several query subsets.

A final indication of efficiency is the additional storage space required to store the
probabilistic representation of the data. If storage is sparse, having a system that re-
quires less storage for the probabilistic representation is better. Please verify what
overhead is acceptable. This sub-metric is only indicated as a single percentage in
QM_metrics_results.txt

A.5.3. Appeal
The appeal of the software relates to the human element, including the satisfaction of
use. Whether the tested software appeals to the company is thus more about personal
preference. To guide with answering the question if the tested software is appealing,
a list of statements is defined. The score given to these statements define the appeal
score of the software. Rate each of the statements below with a score from 1 to 5. A 1
means that the statement does not align with your personal opinion on the software,
so that you strongly disagree with the statement, whereas 5 means that the statement
is very much true, so you strongly agree. Scoring a 3 provides a neutral opinion.

[1, 2, 3, 4, 5] The software is well documented.
[1, 2, 3, 4, 5] The software was easy to work with.
[1, 2, 3, 4, 5] We have sufficient in-house expertise to workwell with the software.
[1, 2, 3, 4, 5] I am satisfied with the monetary expenses that need to be made for

running the software.
[1, 2, 3, 4, 5] The software has a support service.

A.5.4. Drawing Conclusions
After information on each metric is collected, conclusions can be drawn from this
newly acquired information. As a first step, verify if the software supports all function-
alities required. A software that cannot run your key processes is practically useless. If
this is satisfied, the importance of each metric should be identified. When all metrics
are ordered by their importance, a better picture of the suitability of the software can
be drawn. Be critical of your requirements and if the tested software fits these well

90 Appendix A. The QuestionMark Benchmark for Probabilistic Databases

enough. If two systems are benchmarked, compare their results.

A.6. Including Other Database Management Systems
The QuestionMark benchmark for probabilistic databases was designed with general-
isability inmind. Hence why all benchmark queries are also provided in a pseudocode
like language. To test the system, two promising probabilistic database management
systems are already supported in the system; MayBMS and DuBio. Both these sys-
tems are based on PostgreSQL, hence why the QuestionMark Python programs are
also written with PostgreSQL based systems in mind. If you want to benchmark an-
other probabilistic database system, both Python programs need to be adapted to fit
the new system. For this, additional changes are required when implementing a new
non-PostgreSQL based system.

A.6.1. Including any new Probabilistic DBMS
When including a new PostgreSQL basedDMBS, no alterations need to bemade to the
existing codebase. However, new functions should be defined based on the existing
codebase.

As each probabilistic DBMS has its own unique structure when it comes to represent-
ing the probabilities and/or sentences of the possible worlds, the dataset generation
should be adapted to fit the requirements of the new systems. For this, new functions
should be defined. For ease, the placeholder NAME will be used, which denotes the
name of the newly added DBMS. The following additions should bemade to Question-
Mark: The Dataset Generator.

1. database_filler_NAME.py. As the dataset needs to be properly prepared for
the new DBMS, functions need to be designed to tailor the produced dataset
to the needs of the DBMS. The structure should be similar to that defined in
database_filler_dubio.py and database_filler_maybms.py.

A new probabilistic DBMS also has its own SQL dialect, so in QuestionMark: The
Probabilistic Benchmark additions should also be made to the code.

1. queries_NAME.py. To include a new DBMS, the first step is to include the
queries in the corresponding dialect. To do this, create queries_NAME.py. To see
what queries should be included, queries_pseudo_code, queries_MayBMS.py
and queries_DuBio.py can be used as a translation guide. Please stick to the
structure used in these files. When the proficiency level of the to be included
query dialect is not sufficiently high, it is advised to first test the queries in a
database tool of preference. This makes debugging queries easier.

2. execute_queries.py. This file is responsible for sending the queries to the
DBMS. In this file, include from queries_NAME import NAME_QUERIES_DICT .
In execute_query(), also include the DBMS in the first if-statement. Finally,
check if the execution time returned by the DBMS follows the pattern from
MayBMS or from DuBio. When the DBMS uses PostgreSQL 10 or higher, the
default can be used.

3. output_tui.py. This file prints the benchmark output. In create_result_

A.7. Query Implementations 91

file(), add the new DBMS in the if-statement.

4. parameters.py. Include the new DBMS as an option of the DBMS variable.

5. metrics.py. To obtain the metric values from the new system, some metrics
should be tailored to the system. In char_count(), add the DBMS in the if state-
ment and verify if specific queries should get a discount in character count. This
is done, since characters required for raw record information do not count to-
wards the complexity of the dialect. Also the calculation in prob_size() should
be adapted and tailored to the manner in which the DBMS stores the probabilis-
tic data.

A.6.2. Including a new Non-PostgreSQL Based DBMS
To include a new non-PostgreSQL based DBMS system, additional steps need to be
taken. The following adaptations should be made to QuestionMark: The Dataset Gen-
erator.

1. database.ini.tmpl. Needs to be adjusted to support a different system.

2. database_filler.py. Most of this file should be adapted to generate a connec-
tion to the DBMS. Right now, the program uses psycopg2 to establish a database
connection. This library only works with PostgreSQL based database systems.
To provide support for other systems, please read through all methods in this
file and make adaptations where required.

3. insert_query.py. The create() method also uses Psycopg2. This method
should thus also be changed.

The following additional adaptations should be made to QuestionMark: The Proba-
bilistic Benchmark.

1. execute_query.py. This file establishes the connection with the database and
runs the benchmark. Please read through all functions and change the code
where needed.

2. connect_db.py. This file also establishes a connection with the database and is
used for metric queries. Please read through all functions and change the code
where needed. Most of these alterations can be copied from those implemented
in execute_query.

3. database.ini.tmpl. Needs to be adjusted to support a different system.

4. run_benchmark.py. This is the main file to run the benchmark. Also here, psy-
copg2 is used. The present function thus needs to be adapted.

A.7. Query Implementations
This Appendix contains the benchmark queries in pseudocode SQL and provides ex-
amples of its implementations into the dialects of DuBio and MayBMS.

92 Appendix A. The QuestionMark Benchmark for Probabilistic Databases

A.7.1. Queries in Pseudocode
The queries below are included in the benchmark. For each query, additional infor-
mation is provided on its functioning and why it is included in the benchmark.

Test 1: Testing the connection. The first query is mainly included to have a low
strain query that can be used to test the connection. This query consists of basic SQL-
functionalities and all systems should be able to run this.

01 | select attribute 'id'
02 | from entity 'offers'
03 | return the first 10 records;

Insight 1: Retrieve the full dataset, gain insight in data structure. This query is a
real strain tester of the system. The query itself is simple, but it requires the DBMS to
return all its data.

01 | select all attributes
02 | from 'offers';
03 |
04 | if present select all remaining data;

Insight 2: Provide insight into the concentration of offers. This query can be used
to verify to what extent the DBMS can concentrate the uncertainty of an offer. It also
provides insights into the number of clusters that have been formed.

01 | select the count of all attributes alias 'records',
↪→ the count of all distinct values of attribute 'id' alias 'offers',
↪→ the count of all distinct values of attribute 'cluster_id' alias '
↪→ clusters'

02 | from entity 'offers';

Insight 3: Provide insight into the distribution of cluster volumes. This query is in-
cluded as lower strain deterministic query and also includes useful insight into the
dataset. As larger clusters put more strain on probability calculations, it is useful to
gain insight into the distribution of cluster volumes.

01 | select attribute 'cluster_size',
↪→ the count of all values of attribute 'cluster_size' alias 'amount'

02 | from subquery (
03 | select the count of all distinct values of attribute 'id' alias '

↪→ cluster_size'
04 | from entity 'offers'
05 | grouped by attribute 'cluster_id'
06 |) alias 'cluster_sizes'
07 | grouped by attribute 'cluster_size'
08 | ascendingly ordered by 'cluster_size';

Insight 4: Gets the percentage of certain clusters. This query provides insight into
the uncertainty of the generated dataset. A new dataset can be generated when the
result of this query does not match the uncertainty of the real-world dataset. It also
verifies if probability calculations can be done on aggregated data.

01 | select the count of all certain records divided by the count of all
↪→ attributes times 100 rounded to four decimal places alias 'certain
↪→ percentage'

02 | from entity offers;

A.7. Query Implementations 93

Insight 5: Get the id and probability of the offers from a specific possible world. In
some situations it might turn out useful to make a selection based on the probabil-
ity space of a record. This query returns any record satisfying a specific sentence or
probability space declaration.

01 | select attribute 'id',
↪→ the probability attribute ,
↪→ the variable or sentence attribute

02 | from entity 'offers'
03 | satisfying a specific variable or sentence statement;

Insight 6: Get the average probability of the dataset. This is another query that tests
the strain of the system. It performs a probability calculation over the entire dataset.
It also provides insights into the uncertainty of the dataset.

01 | select the average of the probability attribute rounded to four decimal
↪→ places alias 'certainty_of_the_dataset'

02 | from entity 'offers';

Probabilistic 1: Get offers with the probability of their occurrence. This query con-
tains the most basic added functionality of any probabilistic DBMS, which is the pre-
sentation of the probability. It also evaluates the speed of ordering based on the prob-
ability attribute.

01 | select the probability attribute rounded to four decimal places alias '
↪→ probability',
↪→ all attributes

02 | from entity 'offers'
03 | descendingly ordered by 'probability';

Probabilistic 2: Gets the expected count of the categories. One more advanced oper-
ation on probabilistic data is to obtain the expected count of an attribute. This query
evaluates if that operation is supported.

01 | select the attribute 'category',
↪→ the expected count per attribute 'category' alias 'expected_count'

02 | from entity 'offers'
03 | grouped by attribute 'category'
04 | descendingly ordered by 'expected_count';

Probabilistic 3: Gets the expected sum of the product ids per cluster. Another closely
related operation is the expected sum. This query evaluates if that operation is sup-
ported.

01 | select attribute 'cluster_id',
↪→ the expected sum per attribute 'id' alias 'number_of_offers'

02 | from entity 'offers'
03 | grouped by attribute 'cluster_id'
04 | descendingly ordered by 'number_of_offers';

Probablistic 4: Gets the variables/sentence and probability for the categories. This
query is again focused on strain testing. This query produces large aggregations of
probabilities, which need to be evaluated to return the query result. This query tests
if the DBMS can digest these large aggregations.

94 Appendix A. The QuestionMark Benchmark for Probabilistic Databases

01 | select attribute 'category',
↪→ the compound variable/sentence attribute ,
↪→ the compound probability attribute rounded to four demical places
↪→ alias 'probability'

02 | from entity 'offers'
03 | grouped by attribute 'category'
04 | descendingly ordered by 'probability';

Probabilistic 5: Returns the most probable offer that is related to a specified string
. This query represents the behaviour of a search engine, where the most probable
offer satisfying a search condition should be returned. An example string is ’card’.
The pseudocode provided contains a workaroundmethod to obtain themost probable
answer. It can be shortened to represent native support of this functionality. This
query contains hard-coded information and may require an adaptation when having
generated a fitting dataset. See Section 5.4.1 for more information.

01 | select all attributes ,
↪→ the probability attribute rounded to four decimal places alias '
↪→ probability'

02 | from entity 'offers'
03 | satisfying that the attribute value 'cluster_id' exists in subquery (
04 | select attribute 'cluster_id'
05 | from entity 'offers'
06 | satisfying that attribute 'title' a specified string
07 | or that attribute 'description' contains a specified

↪→ string
08 |)
09 | descindingly ordered by 'probability'
10 | return the first 1 records;

Probabilistic 6: Returns all offers containing a specified string with a high uncer-
tainty. When a dataset contains large volumes of highly uncertain data, it can be
useful to let a selection of data pass human inspection. This query returns the most
uncertain offers so these can be manually classified. This query contains hard-coded
information and may require an adaptation when having generated a fitting dataset.
See Section 5.4.1 for more information.

01 | select attribute 'id',
↪→ attribute 'cluster_id',
↪→ attribute 'brand',
↪→ attribute 'category',
↪→ attribute 'identifiers'

02 | from entity 'offers'
03 | satisfying that attribute 'title' contains a specified string
04 | or that attribute 'description' contains a specified string
05 | and the value of the probability attribute is higher than 0.45
06 | and the value of the probability attribute is lower than 0.55;

Insert, Update, Delete 1: Inserting a new probabilistic cluster. When dealing with
probabilistic databases, new data can be added regularly. This query verifies the speed
at which new clusters can be added to the database.

01 | insert into entity 'offers'
02 | the values (a copy of a cluster with size five, with negative id values.);

A.7. Query Implementations 95

03 |
04 | if required add the new probabilities to the corresponding entity;
05 | if required manually repair the probability space;

Insert, Update, Delete 2: Inserting bulk. When large volumes of data are constantly
added to the database, they are likely added in bulk. This query strain tests the DBMS
on large additions of probabilistic data. The current table ‘bulk insert’ contains 1000
offers and their corresponding probabilities.

01 | insert into entity 'offers'
02 | the results of subquery (
03 | select all attributes
04 | from entity 'bulk_insert'
05 |);
06 |
07 | if required add the new probabilities to the corresponding entity;
08 | if required manually repair the probability space;

Insert, Update, Delete 3: Update uncertainty. This query updates the uncertainty
of a specific cluster. As the location of the probability greatly determines the form
of this query, its pseudocode is more abstract. This query contains hard-coded infor-
mation and may require an adaptation when having generated a fitting dataset. See
Section 5.4.1 for more information.

96 Appendix A. The QuestionMark Benchmark for Probabilistic Databases

01 | update the entity containing the probabilities.
02 | alter half of the probabilities of a cluster with four offers;
03 |
04 | if required manually repair the probability space;

Insert, Update, Delete 4: Remove uncertainty. Whenworking with probabilistic data,
chances are that new evidence will be found and the database should be updated ac-
cordingly. In this query, a cluster of size 4 will be split into three clusters. It is cur-
rently run on the cluster with cluster_id 162. This query contains hard-coded infor-
mation and may require an adaptation when having generated a fitting dataset. See
Section 5.4.1 for more information.

01 | update entity 'offers'
02 | set attribute 'cluster_id' with the maximum value of attribute 'cluster_id

↪→ ' + 1,
03 | the variable/sentence/probability attribute to certain
04 | satisfying that attribute 'id' has the value of the first offer in the

↪→ cluster;
05 |
06 | update entity 'offers'
07 | set attribute 'cluster_id' with the maximum value of attribute 'cluster_id

↪→ ' + 1,
08 | the variable/sentence/probability attribute to certain
09 | satisfying that attribute 'id' has the value of the third offer in the

↪→ cluster;
10 |
11 | update entity 'offers'
12 | set the variable/sentence/probability attribute to a new normalized value
13 | satisfying that attribute 'id' has the value of the second offer in the

↪→ cluster;
14 |
15 | update entity 'offers'
16 | set the variable/sentence/probability attribute to a new normalized value
17 | satisfying that attribute 'id' has the value of the fourth offer in the

↪→ cluster;
18 |
19 | if required update the probabilities in the corresponding entity;
20 | if required update the probability space;

Insert, Update, Delete 5: Delete a full cluster. Any probabilistic data should also not
slow down the deletion of data significantly. This query tests the speed of the DBMS
when deleting probabilistic data. This query contains hard-coded information and
may require an adaptation when having generated a fitting dataset. See Section 5.4.1
for more information.

01 | delete all records from entity 'offers'
02 | satisfying that attribute 'cluster_id' has the value of the specified

↪→ cluster;
03 |
04 | if required delete the probabilities in the corresponding entity;
05 | if required manually repair the probability space;

A.7. Query Implementations 97

A.7.2. Queries in DuBio
01 | -- Test 1:
02 | SELECT id
03 | FROM offers
04 | LIMIT 10;
05 |
06 | -- Insight 1:
07 | SELECT *
08 | FROM offers;
09 |
10 | SELECT print(dict) FROM _dict WHERE name='mydict';
11 |
12 | -- Insight 2:
13 | SELECT COUNT(*) as records,
14 | COUNT(DISTINCT(id)) as offers,
15 | COUNT(DISTINCT(cluster_id)) as clusters
16 | FROM offers;
17 |
18 | -- Insight 3:
19 | SELECT cluster_size , COUNT(cluster_size) as amount
20 | FROM (
21 | SELECT COUNT(DISTINCT(id)) as cluster_size
22 | FROM offers
23 | GROUP BY cluster_id
24 |) as cluster_sizes
25 | GROUP BY cluster_size
26 | ORDER BY cluster_size ASC;
27 |
28 | -- Insight 4:
29 | SELECT ROUND(COUNT(CASE WHEN istrue(_sentence) THEN 1 END)::decimal /

↪→ COUNT(*)::decimal, 4) * 100 AS certain_percentage
30 | FROM offers;
31 |
32 | -- Insight 5:
33 | WITH prob AS (
34 | SELECT prob(dict, 'w43=1') AS probability
35 | FROM _dict
36 | WHERE name = 'mydict'
37 |)
38 | SELECT offers.id, prob.probability , hasrva(_sentence , 'w43=1')
39 | FROM offers, prob
40 | WHERE hasrva(_sentence , 'w43=1');
41 |
42 | -- Insight 6:
43 | SELECT AVG(probability) AS certainty_of_the_dataset
44 | FROM (
45 | SELECT round(prob(d.dict, o._sentence)::NUMERIC, 4) AS probability
46 | FROM offers o, _dict d
47 | WHERE d.name = 'mydict'
48 |) AS probabilities;
49 |
50 | -- Probabilistic 1:
51 | SELECT round(prob(d.dict, p._sentence)::NUMERIC, 4) AS probability , o.*
52 | FROM offers o, _dict d
53 | WHERE d.name = 'mydict'
54 | ORDER BY probability DESC;

98 Appendix A. The QuestionMark Benchmark for Probabilistic Databases

55 |
56 | -- Probabilistic 2:
57 | SELECT category, SUM(prob(d.dict, o._sentence)) AS expected_count
58 | FROM offers o, _dict d
59 | WHERE d.name = 'mydict'
60 | GROUP BY category
61 | ORDER BY expected_count DESC;
62 |
63 | -- Probabilistic 3:
64 | SELECT cluster_id , ROUND(SUM(id * prob(d.dict, o._sentence))::NUMERIC, 2)

↪→ AS expected_sum , COUNT(id) AS number_of_offers
65 | FROM offers o, _dict d
66 | WHERE d.name = 'mydict'
67 | GROUP BY cluster_id
68 | ORDER BY number_of_offers DESC;
69 |
70 | -- Probablistic 4:
71 | WITH category_sentence AS (
72 | SELECT category, AGG_OR(_sentence) AS sentence
73 | FROM part
74 | GROUP BY category
75 |)
76 | SELECT cs.*, round(prob(d.dict, cs.sentence)::NUMERIC, 4) AS probability
77 | FROM category_sentence cs, _dict d
78 | WHERE d.name = 'mydict'
79 | ORDER BY probability ASC;
80 |
81 | -- Probabilistic 5:
82 | Returns the most probable offer that is related to 'ford'.
83 | SELECT p.*, round(prob(d.dict, _sentence)::NUMERIC, 4) AS probability
84 | FROM part p, _dict d
85 | WHERE cluster_id IN (
86 | SELECT cluster_id
87 | FROM part
88 | WHERE title LIKE '%ford%'
89 | OR description LIKE '%ford%'
90 |)
91 | ORDER BY probability DESC
92 | LIMIT 1;
93 |
94 | -- Probabilistic 6:
95 | SELECT o.*
96 | FROM offers o, _dict d
97 | WHERE title LIKE '%card%'
98 | OR description LIKE '%card%'
99 | AND prob(d.dict, _sentence) > 0.45
100 | AND prob(d.dict, _sentence) < 0.55;
101 |
102 | -- Insert, Update, Delete 1:
103 | INSERT INTO offers (id, cluster_id , title, brand, category , description ,

↪→ price, identifiers , keyvaluepairs , spectablecontent , "_sentence")
104 | VALUES(-464, 77, ..., Bdd('b77x1=1&v77=1')),
105 | (-466, 77, ..., Bdd('b78x1=0&v78=1')),
106 | (-468, 77, ..., Bdd('b77x1=2&v77=1')),
107 | (-469, 77, ..., Bdd('b78x1=1&v78=1')),
108 | (-471, 77, ..., Bdd('b77x1=0&v77=1'));

A.7. Query Implementations 99

109 |
110 | UPDATE _dict
111 | SET dict = add(dict, 'b77x1=0:0.24454, ..., v77=3:0.246')
112 | WHERE name='mydict';
113 |
114 | -- Insert, Update, Delete 2:
115 | INSERT INTO offers(id, cluster_id , title, brand, category , description ,

↪→ price, identifiers , keyvaluepairs , spectablecontent , _sentence)
116 | SELECT * FROM bulk_insert;
117 |
118 | UPDATE _dict
119 | SET dict = add(dict, 'b000x1=0:0.500000, ... v966=2:0.203147')
120 | WHERE name='mydict';
121 |
122 | -- Insert, Update, Delete 3:
123 | UPDATE _dict
124 | SET dict = upd(dict, 'a7x1=0:0.3992, ..., w8=3:0.184')
125 | WHERE name='mydict';
126 |
127 | -- Insert, Update, Delete 4:
128 | WITH max_cluster AS (
129 | SELECT (max(cluster_id) + 1) AS max_id
130 | FROM offers
131 |)
132 | UPDATE offers
133 | SET cluster_id = max_cluster.max_id,
134 | _sentence = Bdd('1')
135 | FROM max_cluster
136 | WHERE id = 2689021;
137 |
138 | WITH max_cluster AS (
139 | SELECT max(cluster_id) + 1 AS max_id
140 | FROM offers
141 |)
142 | UPDATE offers
143 | SET cluster_id = max_cluster.max_id,
144 | _sentence = Bdd('1')
145 | FROM max_cluster
146 | WHERE id = 7257664;
147 |
148 | UPDATE offers
149 | SET _sentence = Bdd('a162x5=0&w162=0')
150 | WHERE id = 10198975;
151 |
152 | UPDATE offers
153 | SET _sentence = Bdd('a162x5=1&w162=0')
154 | WHERE id = 2668263;
155 |
156 | UPDATE _dict
157 | SET dict = add(dict, 'w162=0:0.83')
158 | WHERE name='mydict';
159 |
160 | UPDATE _dict
161 | SET dict = del(dict, 'a162x5=2')
162 | WHERE name='mydict';
163 |

100 Appendix A. The QuestionMark Benchmark for Probabilistic Databases

164 | -- Insert, Update, Delete 5:
165 | DELETE FROM offers
166 | WHERE cluster_id = 41;
167 |
168 | UPDATE _dict
169 | SET dict = del(dict, 'a41x1=0, ..., w44=5')
170 | WHERE name='mydict';

A.7.3. Queries in MayBMS
01 |
02 | -- Test 1:
03 | SELECT id
04 | FROM offers
05 | LIMIT 10;
06 |
07 | -- Insight 1:
08 | SELECT *
09 | FROM offers;
10 |
11 | -- Insight 2:
12 | SELECT COUNT(*) as records,
13 | COUNT(DISTINCT(id)) as offers,
14 | COUNT(DISTINCT(cluster_id)) as clusters
15 | FROM offers_setup;
16 |
17 | -- Insight 3:
18 | SELECT cluster_size , COUNT(cluster_size) as amount
19 | FROM (
20 | SELECT COUNT(DISTINCT(id)) as cluster_size
21 | FROM offers_setup
22 | GROUP BY cluster_id
23 |) as cluster_sizes
24 | GROUP BY cluster_size
25 | ORDER BY cluster_size ASC;
26 |
27 | -- Insight 4:
28 | SELECT ROUND(all_certain::decimal / all_offers::decimal, 4) * 100 AS

↪→ certain_percentage
29 | FROM (
30 | SELECT COUNT(id) AS all_offers
31 | FROM offers_setup
32 |) AS count_all , (
33 | SELECT COUNT(id) AS all_certain
34 | FROM (
35 | SELECT id, tconf() AS confidence
36 | FROM offers
37 |) AS confidences
38 | WHERE confidence = 1
39 |) AS count_cert;
40 |
41 | -- Insight 5:
42 | SELECT id, tconf(*), _v0
43 | FROM offers
44 | WHERE _v1 = 52379
45 | AND _d1 = 548185;

A.7. Query Implementations 101

46 |
47 | -- Insight 6:
48 | SELECT round((AVG(tconf()) * 100)::NUMERIC, 4) AS certainty_of_the_dataset
49 | FROM offers;
50 |
51 | -- Probabilistic 1:
52 | SELECT round(tconf()::decimal, 4) AS probability , *
53 | FROM offers
54 | ORDER BY probability DESC;
55 |
56 | -- Probabilistic 2:
57 | SELECT category, ECOUNT() AS expected_count
58 | FROM offers
59 | GROUP BY category
60 | ORDER BY expected_count DESC;
61 |
62 | -- Probabilistic 3:
63 | SELECT cluster_id , esum(id), COUNT(id) AS number_of_offers
64 | FROM offers
65 | GROUP BY cluster_id
66 | ORDER BY number_of_offers DESC;
67 |
68 | -- Probablistic 4:
69 | SELECT category, conf() AS probability
70 | FROM offers
71 | GROUP BY category
72 | ORDER BY probability DESC;
73 |
74 | -- Probabilistic 5:
75 | SELECT *, round(tconf()::NUMERIC, 4) AS probability
76 | FROM offers
77 | WHERE cluster_id IN (
78 | SELECT cluster_id
79 | FROM offers_setup
80 | WHERE title LIKE '%card%'
81 | OR description LIKE '%card%'
82 |)
83 | ORDER BY probability DESC
84 | LIMIT 1;
85 |
86 | -- Probabilistic 6:
87 | SELECT id, cluster_id , brand, category , identifiers
88 | FROM offers
89 | WHERE title LIKE '%card%'
90 | OR description LIKE '%card%'
91 | AND tconf() > 0.45
92 | AND tconf() < 0.55;
93 |
94 | -- Insert, Update, Delete 1:
95 | INSERT INTO offers_setup (id, cluster_id , title, brand, category,

↪→ description , price, identifiers , keyvaluepairs , spectablecontent ,
↪→ world_prob , attribute_prob)

96 | VALUES(-464, 77, ..., 0.42911, 0.629),
97 | (-466, 77, ..., 0.5, 0.246),
98 | (-468, 77, ..., 0.32635, 0.629),
99 | (-469, 77, ..., 0.5, 0.125),

102 Appendix A. The QuestionMark Benchmark for Probabilistic Databases

100 | (-471, 77, ..., 0.24454, 0.629);
101 |
102 | DROP TABLE IF EXISTS offers_rk_world CASCADE;
103 | DROP TABLE IF EXISTS offers_rk_attrs CASCADE;
104 | DROP TABLE IF EXISTS offers CASCADE;
105 |
106 | CREATE TABLE offers_rk_world AS REPAIR KEY cluster_id IN offers_setup

↪→ WEIGHT BY world_prob;
107 | CREATE TABLE offers_rk_attrs AS REPAIR KEY id IN offers_setup WEIGHT BY

↪→ attribute_prob;
108 |
109 | CREATE TABLE offers AS (
110 | SELECT attrs.*
111 | FROM offers_rk_attrs AS attrs, offers_rk_world AS world
112 | WHERE attrs.id = world.id
113 |);
114 |
115 | -- Insert, Update, Delete 2:
116 | INSERT INTO offers_setup (id, cluster_id , title, brand, category,

↪→ description , price, identifiers , keyvaluepairs , spectablecontent ,
↪→ world_prob , attribute_prob)

117 | SELECT * FROM bulk_insert;
118 |
119 | DROP TABLE IF EXISTS offers_rk_world CASCADE;
120 | DROP TABLE IF EXISTS offers_rk_attrs CASCADE;
121 | DROP TABLE IF EXISTS offers CASCADE;
122 |
123 | CREATE TABLE offers_rk_world AS REPAIR KEY cluster_id IN offers_setup

↪→ WEIGHT BY world_prob;
124 | CREATE TABLE offers_rk_attrs AS REPAIR KEY id IN offers_setup WEIGHT BY

↪→ attribute_prob;
125 |
126 | CREATE TABLE offers AS (
127 | SELECT attrs.*
128 | FROM offers_rk_attrs AS attrs, offers_rk_world AS world
129 | WHERE attrs.id = world.id
130 |);
131 |
132 | -- Insert, Update, Delete 3:
133 | UPDATE offers
134 | SET world_prob = 0.345,
135 | attribute_prob = 0.3992
136 | WHERE _d0 = 615777
137 | AND _d1 = 613619;
138 |
139 | UPDATE offers
140 | SET world_prob = 0.345,
141 | attribute_prob = 0.6008
142 | WHERE _d0 = 615777
143 | and _d1 = 613841;
144 |
145 | UPDATE offers
146 | SET world_prob = 0.1254,
147 | attribute_prob = 0.5
148 | WHERE _d0 = 615999
149 | AND _d1 = 613619;

A.7. Query Implementations 103

150 |
151 | UPDATE offers
152 | SET world_prob = 0.1254,
153 | attribute_prob = 0.5
154 | WHERE _d0 = 615999
155 | and _d1 = 613841;
156 |
157 | UPDATE offers
158 | SET world_prob = 0.487,
159 | attribute_prob = 0.4300
160 | WHERE _d0 = 615850
161 | and _d1 = 613395;
162 |
163 | UPDATE offers
164 | SET world_prob = 0.487,
165 | attribute_prob = 0.5700
166 | WHERE _d0 = 615850
167 | AND _d1 = 613692;
168 |
169 | UPDATE offers
170 | SET world_prob = 0.487,
171 | attribute_prob = 0.4300
172 | WHERE _d0 = 615999
173 | and _d1 = 613841;
174 |
175 | UPDATE offers
176 | SET world_prob = 0.487
177 | WHERE _d0 = 615553
178 | AND _d1 = 613692;
179 |
180 | UPDATE offers
181 | SET world_prob = 0.487
182 | WHERE _d0 = 615553
183 | and _d1 = 613395;
184 |
185 | UPDATE offers
186 | SET world_prob = 0.329
187 | WHERE _d0 = 614032
188 | AND _d1 = 612733;
189 |
190 | UPDATE offers
191 | SET world_prob = 0.329
192 | WHERE _d0 = 614032
193 | and _d1 = 611874;
194 |
195 | UPDATE offers
196 | SET world_prob = 0.184
197 | WHERE _d0 = 615197
198 | AND _d1 = 612733;
199 |
200 | UPDATE offers
201 | SET world_prob = 0.184
202 | WHERE _d0 = 615197
203 | and _d1 = 613039;
204 |
205 | DROP TABLE IF EXISTS offers_rk_world CASCADE;

104 Appendix A. The QuestionMark Benchmark for Probabilistic Databases

206 | DROP TABLE IF EXISTS offers_rk_attrs CASCADE;
207 | DROP TABLE IF EXISTS offers CASCADE;
208 |
209 | CREATE TABLE offers_rk_world AS REPAIR KEY cluster_id IN offers_setup

↪→ WEIGHT BY world_prob;
210 | CREATE TABLE offers_rk_attrs AS REPAIR KEY id IN offers_setup WEIGHT BY

↪→ attribute_prob;
211 |
212 | CREATE TABLE offers AS (
213 | SELECT attrs.*
214 | FROM offers_rk_attrs AS attrs, offers_rk_world AS world
215 | WHERE attrs.id = world.id
216 |);
217 |
218 | -- Insert, Update, Delete 4:
219 | UPDATE offers_setup
220 | SET cluster_id = max_cluster.max_id,
221 | world_prob = 1,
222 | attribute_prob = 1
223 | FROM (
224 | SELECT max(cluster_id) + 1 AS max_id
225 | FROM offers_setup
226 |) as max_cluster
227 | WHERE id = 12071001;
228 |
229 | UPDATE offers_setup
230 | SET cluster_id = max_cluster.max_id,
231 | world_prob = 1,
232 | attribute_prob = 1
233 | FROM (
234 | SELECT max(cluster_id) + 1 AS max_id
235 | FROM offers_setup
236 |) as max_cluster
237 | WHERE id = 16457529;
238 |
239 | UPDATE offers_setup
240 | SET world_prob = 0.63,
241 | attribute_prob = 0.5
242 | WHERE id = 7339350;
243 |
244 | UPDATE offers_setup
245 | SET world_prob = 0.63,
246 | attribute_prob = 0.5
247 | WHERE id = 12326926;
248 |
249 | DROP TABLE IF EXISTS offers_rk_world CASCADE;
250 | DROP TABLE IF EXISTS offers_rk_attrs CASCADE;
251 | DROP TABLE IF EXISTS offers CASCADE;
252 |
253 | CREATE TABLE offers_rk_world AS REPAIR KEY cluster_id IN offers_setup

↪→ WEIGHT BY world_prob;
254 | CREATE TABLE offers_rk_attrs AS REPAIR KEY id IN offers_setup WEIGHT BY

↪→ attribute_prob;
255 |
256 | CREATE TABLE offers AS (
257 | SELECT attrs.*

A.7. Query Implementations 105

258 | FROM offers_rk_attrs AS attrs, offers_rk_world AS world
259 | WHERE attrs.id = world.id
260 |);
261 |
262 | -- Insert, Update, Delete 5:
263 | DELETE FROM offers_setup
264 | WHERE cluster_id = 41;
265 |
266 | DROP TABLE IF EXISTS offers_rk_world CASCADE;
267 | DROP TABLE IF EXISTS offers_rk_attrs CASCADE;
268 | DROP TABLE IF EXISTS offers CASCADE;
269 |
270 | CREATE TABLE offers_rk_world AS REPAIR KEY cluster_id IN offers_setup

↪→ WEIGHT BY world_prob;
271 | CREATE TABLE offers_rk_attrs AS REPAIR KEY id IN offers_setup WEIGHT BY

↪→ attribute_prob;
272 |
273 | CREATE TABLE offers AS (
274 | SELECT attrs.*
275 | FROM offers_rk_attrs AS attrs, offers_rk_world AS world
276 | WHERE attrs.id = world.id
277 |);

B
WDC Product Offers Dataset

B.1. Elaboration on the Dataset
In order to analyse the data, an adaptationwasmade to the Python programdeveloped
by Flokstra, whichwas created for version 1.0 of theWDCproduct corpus dataset. The
code used can be found at GitHub [30].

A selection of queries was ran to gain insights on the dataset. An interesting find is
that there is a total of twenty five product categories and all offers have a category.
Additionally, there is a total of eight identifiers, of which /sku and /productID are the
most used.

B.2. JSON Structure of a Product Offer

To provide a clear example of the structure of the data, a product offer is displayed
from which all information is known. Only about 0.5% of the product offers in the
dataset contain no NULL values.

1 {
2 "brand": "hp enterprise",
3 "category": "Computers_and_Accessories",
4 "cluster_id": 5481799,
5 "description": "description ait1 35 70gb hot swap lvdpart number s

↪→ option part 70 40375 03",
6 "id": 519,
7 "identifiers": [{
8 "\/mpn": "[704037503]"
9 }],
10 "keyValuePairs": {
11 "category": "proliant",
12 "sub category": "tapedrive",
13 "generation": "2 4gb",
14 "part number": "142074 001",
15 "products id": "12849",
16 "tape type": "dat",

107

108 Appendix B. WDC Product Offers Dataset

17 "native capacity": "2gb",
18 "interface type": "scsi",
19 "compressed capacity": "4gb",
20 "form factor": "5 25 inch",
21 "": ""},
22 "price": usd 651 95,
23 "specTableContent": "specifications category proliant sub category tape

↪→ drive generation 35 70gb part number 70 40375 03 products id
↪→ 13255 capacity 35 70gb interface type scsi lvd enclosure type
↪→ canister hot swap configuration type canister hot swap",

24 "title": "null , hp 70 40375 03 ait1 35 gb hs lvd"
25 }

C
Performance

This appendix provides the performance measures of QuestionMark: The Dataset
Generator when using different parameter values. The performance is measured over
the blocking algorithm and matching algorithm separately. The provided times are
the average time over the indicated amount of iterations. For information on the used
methodology, see Section 4.3.

C.1. Blocking Algorithm Performance
Performance of the Adaptive Sorted Neighborhood blocking algorithm

Shows the runtime, precision and recall for varying values of the distance measure.
See Figure C.1 for a visual representation of the data below.

01 | time , prec i s ion , r e c a l l : da tase t s i ze , distance , parameters , # i t e r a t i o n s
02 | 31 ms, 0.360 , 0.239: 4 687 records , Levenshtein , mbs = 30 , phi = 0.4 , ws = 6. 10 runs
03 | 22 ms, 0.392 , 0 .521 : 4 687 records , Jaro , mbs = 30 , phi = 0.4 , ws = 6. 10 runs
04 | 20 ms, 0.392 , 0 .521 : 4 687 records , Jaro−Winkler , mbs = 30 , phi = 0.4 , ws = 6. 10 runs
05 | 436 ms, 0.496 , 0.148: 4 687 records , Hamming, mbs = 30 , phi = 0.4 , ws = 6. 10 runs
06 | 150 ms, 0.390 , 0.367: 4 687 records , Jaccard , mbs = 30 , phi = 0.4 , ws = 6. 10 runs

Shows the runtime, precision and recall for varying values of the distance threshold.
See Figure C.2 for a visual representation of the data below.

01 | time , prec i s ion , r e c a l l : da tase t s i ze , distance , parameters , # i t e r a t i o n s
02 | 47 ms, 0.553 , 0.109: 4 687 records , Jaro , mbs = 30 , phi = 0 . 1 , ws = 2. 10 runs
03 | 34 ms, 0.396 , 0.403: 4 687 records , Jaro , mbs = 30 , phi = 0.3 , ws = 2. 10 runs
04 | 28 ms, 0.392 , 0 .512 : 4 687 records , Jaro , mbs = 30 , phi = 0.4 , ws = 2. 10 runs
05 | 56 ms, 0.384 , 0 .512 : 4 687 records , Jaro , mbs = 30 , phi = 0.5 , ws = 2. 10 runs

Shows the runtime, precision and recall for varying values of the window size. See
Figure C.3 for a visual representation of the data below.

01 | time , prec i s ion , r e c a l l : da tase t s i ze , distance , parameters , # i t e r a t i o n s
02 | 36 ms, 0.388 , 0.496: 4 687 records , Jaro , mbs = 30 , phi = 0.4 , ws = 1 . 10 runs
03 | 25 ms, 0.391 , 0 .5 17 : 4 687 records , Jaro , mbs = 30 , phi = 0.4 , ws = 3 . 10 runs
04 | 28 ms, 0.392 , 0 .521 : 4 687 records , Jaro , mbs = 30 , phi = 0.4 , ws = 6. 10 runs
05 | 21 ms, 0.386 , 0 .519 : 4 687 records , Jaro , mbs = 30 , phi = 0.4 , ws = 10. 10 runs

109

110 Appendix C. Performance

Shows the runtime, precision and recall for varying values of the maximum block size.
See Figure C.4 for a visual representation of the data below.

01 | time , prec is ion , r e c a l l : da tase t s i ze , distance , parameters , # i t e r a t i o n s
02 | 33 ms, 0.458 , 0.329: 4 687 records , Jaro , mbs = 6 , phi = 0.4 , ws = 6. 10 runs
03 | 24 ms, 0.400 , 0 .471 : 4 687 records , Jaro , mbs = 20 , phi = 0.4 , ws = 6. 10 runs
04 | 21 ms, 0.374 , 0.563: 4 687 records , Jaro , mbs = 50 , phi = 0.4 , ws = 6. 10 runs
05 | 19 ms, 0.364 , 0.570: 4 687 records , Jaro , mbs = 80, phi = 0.4 , ws = 6. 10 runs

Shows the runtime for varying values of the dataset size. See Figure C.5 for a visual
representation of the data below.

01 | time , prec is ion , r e c a l l : da tase t s i ze , distance , parameters , # i t e r a t i o n s
02 | 19 ms, N/A: 1 171 records , Levenshtein , mbs = 30 , phi = 0.2 , ws = 2. 10 runs
03 | 33 ms, N/A: 2 343 records , Levenshtein , mbs = 30 , phi = 0.2 , ws = 2. 10 runs
04 | 410 ms, N/A: 20 000 records , Levenshtein , mbs = 30 , phi = 0.2 , ws = 2. 10 runs
05 | 7532 ms, N/A: 80 000 records , Levenshtein , mbs = 30 , phi = 0.2 , ws = 2. 10 runs
06 | 42778 ms, N/A: 200 000 records , Levenshtein , mbs = 30 , phi = 0.2 , ws = 2. 5 runs
07 | 2276543 ms, N/A: 999 000 records , Levenshtein , mbs = 30 , phi = 0.2 , ws = 2. 1 runs

Figure C.1: Performance of the ASN algorithm varying distance measures.

Figure C.2: Performance of the ASN algorithm for varying values of phi.

C.1. Blocking Algorithm Performance 111

Figure C.3: Performance of the ASN algorithm for varying window sizes.

Figure C.4: Performance of the ASN algorithm for varying maximum block sizes.

Figure C.5: Performance of the ASN algorithm for varying dataset sizes.

112 Appendix C. Performance

Performance of the Improved Suffix Array blocking algorithm

Shows the runtime, precision and recall for varying values of the distance threshold.
See Figure C.6 for a visual representation of the data below.

01 | time , prec is ion , r e c a l l : da tase t s i ze , distance , parameters , # i t e r a t i o n s
02 | 1679 ms, 0 .311 , 0.425: 4 687 records , Jaro , msl = 3 , mbs = 30 , phi = 0 .2 . 10 runs
03 | 1669 ms, 0.374 , 0.845: 4 687 records , Jaro , msl = 3 , mbs = 30 , phi = 0 .3 . 10 runs
04 | 1609 ms, 0.324 , 0.994: 4 687 records , Jaro , msl = 3 , mbs = 30 , phi = 0 .4 . 10 runs
05 | >3 min , −, −: 4 687 records , Jaro , msl = 3 , mbs = 30 , phi = 0 . 5 . 1 runs

Shows the runtime, precision and recall for varying values of the maximum block size.
See Figure C.7 for a visual representation of the data below.

01 | time , prec is ion , r e c a l l : da tase t s i ze , distance , parameters , # i t e r a t i o n s
02 | 1631 ms, 0.331 , 0.993: 4 687 records , Jaro , msl = 3 , mbs = 6 , phi = 0 .4 . 10 runs
03 | 1695 ms, 0.329 , 0.994: 4 687 records , Jaro , msl = 3 , mbs = 10 , phi = 0 .4 . 10 runs
04 | 1560 ms, 0.328 , 0.994: 4 687 records , Jaro , msl = 3 , mbs = 20 , phi = 0 .4 . 10 runs
05 | 1593 ms, 0.322 , 0.994: 4 687 records , Jaro , msl = 3 , mbs = 50 , phi = 0 .4 . 10 runs

Shows the runtime, precision and recall for varying values of the minimum suffix
length. See Figure C.8 for a visual representation of the data below.

01 | time , prec is ion , r e c a l l : da tase t s i ze , distance , parameters , # i t e r a t i o n s
02 | 1616 ms, 0.324 , 0.994: 4 687 records , Jaro , msl = 1 , mbs = 30 , phi = 0 . 5 . 10 runs
03 | 1565 ms, 0.324 , 0.994: 4 687 records , Jaro , msl = 5 , mbs = 30 , phi = 0 . 5 . 10 runs
04 | 1386 ms, 0.330 , 0.981: 4 687 records , Jaro , msl = 15 ,mbs = 30 , phi = 0 . 5 . 10 runs

Shows the runtime, precision and recall for varying values of the distance threshold
and distance measure.

01 | time , prec is ion , r e c a l l : da tase t s i ze , distance , parameters , # i t e r a t i o n s
02 | 1339 ms, 0.267 , 0 .314: 4 687 records , Levenshtein , msl = 3 , mbs = 30 , phi = 0 .4 . 10 runs
03 | 1609 ms, 0.292 , 0.401: 4 687 records , Levenshtein , msl = 3 , mbs = 30 , phi = 0 . 5 . 10 runs
04 | 1316 ms, 0.320 , 0.542: 4 687 records , Levenshtein , msl = 3 , mbs = 30 , phi = 0 .6 . 10 runs
05 | 4051 ms, 0.278 , 0.224: 4 687 records , Hamming, msl = 3 , mbs = 30 , phi = 0 .4 . 10 runs
06 | 4167 ms, 0.310 , 0.301: 4 687 records , Hamming, msl = 3 , mbs = 30 , phi = 0 . 5 . 10 runs
07 | 4031 ms, 0.330 , 0.390: 4 687 records , Hamming, msl = 3 , mbs = 30 , phi = 0 .6 . 10 runs
08 | 3929 ms, 0.347 , 0 .481: 4 687 records , Jaccard , msl = 3 , mbs = 30 , phi = 0 .4 . 10 runs
09 | 4486 ms, 0.370 , 0.698: 4 687 records , Jaccard , msl = 3 , mbs = 30 , phi = 0 . 5 . 10 runs
10 | 3993 ms, 0.359 , 0.881: 4 687 records , Jaccard , msl = 3 , mbs = 30 , phi = 0 .6 . 10 runs
11 | 1471 ms, 0.375 , 0.800: 4 687 records , Jaro−Winkler , msl = 3 , mbs = 30 , phi = 0 .3 . 10 runs
12 | 1434 ms, 0.330 , 0.981: 4 687 records , Jaro−Winkler , msl = 3 , mbs = 30 , phi = 0 .4 . 10 runs

C.1. Blocking Algorithm Performance 113

Figure C.6: Performance of the ISA algorithm for varying values of phi.

Figure C.7: Performance of the ISA algorithm for varying maximum block sizes.

Figure C.8: Performance of the ISA algorithm for varying minimum suffix lengths.

114 Appendix C. Performance

C.2. Matching Algorithm Performance
For the matching algorithm, the attributes used for offer similarity are the ones that
are in the default benchmark, which are brand, category, cluster_id, description, iden-
tifiers, keyValuePairs, price, specTableContent and title with weights 1, 0.7, 1, 0.8, 0.8,
0.8, 1, 0.7 and 1 respectively.

Performance of the Attribute-based Entity Resolution matching algo-
rithm run on blocks created by Adaptive Sorted Neighborhood.

Shows the runtime, precision and recall for varying values of the lower distance thresh-
old. Run on blocks created by ASNwith parametersWS = 2, PHI = 0.36, MBS = 6. See
Figure C.9 for a visual representation of the data below.

01 | time , exp . prec . , exp . rec . : da tase t s i ze , distance , parameters , # i t e r a t i o n s
02 | 2588 ms, 0.073 , 0 . 133: 4 687 records , Jaro , low_phi = 0.08 , upp_phi = 0 . 5 . 10 runs
03 | 162 ms, 0.061 , 0 .313 : 4 687 records , Jaro , low_phi = 0.12 , upp_phi = 0 . 5 . 10 runs
04 | 115 ms, 0.061 , 0.349: 4 687 records , Jaro , low_phi = 0.15 , upp_phi = 0 . 5 . 10 runs
05 | 117 ms, 0.060 , 0.358: 4 687 records , Jaro , low_phi = 0.20 , upp_phi = 0 . 5 . 10 runs
06 | 114 ms, 0.060 , 0.358: 4 687 records , Jaro , low_phi = 0.30 , upp_phi = 0 . 5 . 10 runs

Shows the runtime, precision and recall for varying values of the upper distance thresh-
old. Run on blocks created by ASNwith parametersWS = 2, PHI = 0.36, MBS = 6. See
Figure C.10 for a visual representation of the data below.

01 | time , exp . prec . , exp . rec . : da tase t s i ze , distance , parameters , # i t e r a t i o n s
02 | 114 ms, 0.060 , 0.358: 4 687 records , Jaro , low_phi = 0.20 , upp_phi = 0.22 . 10 runs
03 | 114 ms, 0.061 , 0 .313 : 4 687 records , Jaro , low_phi = 0.20 , upp_phi = 0 .3 . 10 runs
04 | 114 ms, 0.060 , 0.358: 4 687 records , Jaro , low_phi = 0.20 , upp_phi = 0 . 7 . 10 runs

Figure C.9: Performance of the AER algorithm on ASN for varying values of the lower phi.

C.2. Matching Algorithm Performance 115

Figure C.10: Performance of the AER algorithm on ASN for varying values of the upper phi.

Performance of the Attribute-based Entity Resolution algorithm run on
blocks created by Improved Suffix Array.

Shows the runtime, precision and recall for varying values of the upper and lower
distance threshold. Run on blocks created by ISA with parameters PHI = 0.36, MBS
= 6, MSL = 3. See Figure C.11 for a visual representation of the data below.

01 | time , exp . prec . , exp . rec . : da tase t s i ze , distance , parameters , # i t e r a t i o n s
02 | > 5 min , −, −: 4 687 records , Jaro , low_phi = 0.22 , upp_phi = 0.25 . 1 run
03 | 21104 ms, 0.005 , 0.978: 4 687 records , Jaro , low_phi = 0.25 , upp_phi = 0.30. 10 runs
04 | 21594 ms, 0.005 , 0 .977: 4 687 records , Jaro , low_phi = 0.30 , upp_phi = 0.35 . 5 runs

Figure C.11: Performance of the AER algorithm on ISA for varying values of phi.

D
User Study

This appendix provides additional information on the user study performed in this re-
search. The user study validates the design of the benchmark andwas used to improve
the design of the benchmark. In this appendix, the informed consent form that was
shared with all participants can be found, as well as the task provided for the formal
experiment and the questions asked during the interview.

D.1. Informed Consent Form
Before conducting the research, the participants were informed on the research pur-
pose and its potential risks. This was done both written and verbally. The written
form is included as it was provided to the participants on paper.

117

Informed Consent Form

QuestionMark User Study

Project title
The design of the QuestionMark probabilistic benchmark.

Purpose of the study
I am inviting you to participate in this research project about the QuestionMark benchmark.
This research is being conducted to obtain insights in the usability of the designed
benchmark and to improve its design.

Procedures
You will participate in a formal experiment lasting approximately one hour. You will be asked
to install and run the designed benchmark by the instructions provided by the program
itself. This part should take 30 to 45 minutes. When completed, you will be asked questions
on your experiences working with the benchmark and on possible points of improvement.

Potential risks and discomforts
There are no obvious physical, legal or economic risks associated with participating in this
study. You do not have to answer any questions you do not wish to answer. Your
participation is voluntary and you are free to discontinue your participation at any time.

Potential benefits
Participation in this study does not guarantee any beneficial results to you. As a result of
participating you may better understand the concept of benchmarking and probabilistic
databases. The broader goal of this research is to deliver a benchmark so that current and
novel probabilistic database management systems can be benchmarked on performance,
and to stimulate the use of these systems in day-to-day business processes.

Confidentiality
Your privacy will be protected to the maximum extent possible. No personally identifiable
information will be reported in any research product. Only the researcher will have access to
your responses. Within these restrictions, results of this study will be made available to you
upon request. At the start of your research your name will be replaced by a pseudonym;
your name will be coded.

The data will be stored in the University of Twente OneDrive. The original data will be
deleted four weeks after the experiment or when the paper is published, whichever is
soonest.

Compensation
You will not be compensated for participation in this research.

Right to withdraw and questions
Your participation in this research is completely voluntary. You may choose not to take part
at all. If you decide to participate in this research, you may stop participating at any time. If
you decide not to participate in this study or if you stop participating at any time, you will
not be penalized or lose any benefits to which you otherwise qualify. You do not need to
provide any explanation on why you stop participating. After the experiment you have five
working days to withdraw your consent; after that your responses have been included in the
anonymized experiment results and cannot be traced to you anymore. If you provide
consent, the data you provided before you stopped participating will be processed in this
research; no new data will be collected or used.

If you decide to stop taking part in the study, if you have questions, concerns, or complaints,
or if you need to report an injury related to the research, please contact the primary
investigator:

Nikki Zandbergen
n.zandbergen@student.utwente.nl

Statement of consent
Your signature indicates that you are at least 16 years of age; you have read this consent
form or have had it read to you; your questions have been answered to your satisfaction and
you voluntarily agree that you will participate in this research study. You will receive a copy
of this signed consent form.

I agree to participate in a research project led by Nikki Zandbergen. The purpose of this
document is to specify the terms of my participation in the project through being inter-
viewed.

1. I have been given sufficient information about this research project. The purpose of my
participation as an interviewee in this project has been explained to me and is clear.

2. My participation as an interviewee in this project is voluntary. There is no explicit or
implicit coercion whatsoever to participate.

3. Participation involves following a formal experiment followed by getting interviewed by
the main researcher. This experiment will last 60 minutes. I allow the researcher to take
written notes during the interview. It is clear to me that in case I do not want my interview
answers to be written down I am at any point of time fully entitled to withdraw from
participation.

4. I have the right not to answer any of the questions. If I feel uncomfortable in any way
during the interview session, I have the right to withdraw from the interview.

5. I have been given the explicit guarantees that the researcher will not identify me by name
or function in any reports using information obtained from this interview, and that my
confidentiality as a participant in this study will remain secure.

6. I have been given the guarantee that this research project has been reviewed and
approved by the Ethics Committee of Computer and Information Science of the University of
Twente. For research problems or any other question regarding the research project, the
Secretary of the Ethics Committee at University Twente may be contacted through
ethicscommittee-cis@utwente.nl.

7. I have read and understood the points and statements of this form. I have had all my
questions answered to my satisfaction, and I voluntarily agree to participate in this study.

8. I have been given a copy of this consent form co-signed by the interviewer.

_____________________ _____________________ ________
Participant Signature Date

_____________________ _____________________ ________
Researcher Signature Date

D.2. Formal Experiment 121

D.2. Formal Experiment
The first part of the user study consisted of a formal experiment. Before the start of
this part, the following information was read to the participants:

Thank you for participating in my research. You have been informed on
the purpose of this research and its risks. Have you signed the informed
consent form? You can ask questions at any point or quit the research
without the need of stating a reason. Can you confirm again whether you
want to participate in this research?

So this research will take about an hour. It is a long sit, so if you would
like anything to drink or have a short break please let me know.

For the first half, I will ask you to install and run the benchmark as if you
were an employee of a company that is asked to benchmark their software.
This means that you only have the information provided by the bench-
mark at hand. The database is already set up, so you only need to estab-
lish the connection to it.

For the second part, I will ask you some questions regarding your experi-
ences with the benchmark.

If you have any questions or remarks about the benchmark you may ask
or state them directly as they pop into your head.

Do you have any questions before we start?

The participants were then provided with the following information on paper:

On the laptop given to you there is a browser with the GitLab webpage of
the benchmark already opened.

There is also a folder ‘UserStudy’ already opened. You can use this folder
to save anything you deem necessary. During the process, you need to zip
some created files. Check the back of this paper for instructions.

Good luck! You can always ask questions or take a break.

You need a smaller dataset to run the benchmark. You find out that the pa-
rameters are already set correctly for the requirements of your company.

Your company has the following database credentials:
host=127.0.0.1
database=postgres
user=postgres
password=postgres
port=5433

122 Appendix D. User Study

D.3. Interview Questions
After the participant completed the formal experiment, a small interview was con-
ducted. For this interview, the following questions were asked.

1. What do you think?

2. How would you rate the user manual provided with the benchmark? Did you
have trouble understanding specific steps? Were steps missing?

3. How do you rate the user-friendliness? Was it easy or difficult to use?

4. Howwould you rate your ownPython level? Was that sufficient to run the bench-
mark?

5. How much previous knowledge on benchmarking and (probabilistic) database
technology do you have?

6. Can you understand the provided results?

7. Do you have any further suggestions for improvement?

8. Anything else you would like to add?

D.4. Extensive Results
The following feedbackwas collected during each of the user studies. Before each item,
the type of feedback is indicated between square brackets. Here, [o] indicates that the
feedback was collected by means of observation by the researcher and [c] indicates
that it was a comment provided by the subject. Answers on questions are indicated by
[q1] etc.

Participant #1

[c] It is unclear what Python version is required. Does any version work?

[o] It was not directly clear that the project should be downloaded from GitLab.

[o] The laptop used to test the benchmark on posed some struggles to set up a work-
ing Python environment to download and run the benchmark in.

[o] Indicate that for the dataset download the normalized version is needed.

[c] It is unclear what parameters are required for the setup.

[c] Is is unclear whether a smaller dataset should be generated.

[c] It feels complicated that the functions required to run QuestionMark: The
Dataset Generator should be manually uncommented and run. This should be
automated.

[c] It should be indicatedmore clearly whether the size parameter uses a percentage
or a percentile.

[o] Instructions should be added to the manual on how to zip the produced files.

[c] The manual is a bit wordy. Several steps can be combined and the instructions
on the ISA algorithm cause confusion.

D.4. Extensive Results 123

[c] For the software towork, you need tomake toomany clicks. First of all to explore
the structure of the software, but also to actually run the software.

[o] The port was not included in database.ini.tmpl. This should be added.

[o] It was not clear that the performance tests of QuestionMark: The Dataset Gen-
erator should not be run for the benchmarking procedure.

[c] The manual does not state clearly enough that once the dataset is produced you
need to continue to QuestionMark: The Probabilistic Benchmark.

[c] Also inQuestionMark: The Probabilistic Benchmark the process should bemore
automated.

[c] In the benchmark results document it would be clearer if the query time would
be displayed above the query result.

[q1] Since the participant had no prior knowledge on database benchmarking it
would be appreciated if more explanation is included on what processes are in-
cluded and why they are of importance.

[q2] The user manual had some errors. These errors were all mentioned during the
study. It is advised to provide users the link to QuestionMark: The Probabilistic
Benchmark and let them start there, since that is the main program.

[q4] The Python level was sufficient to run the benchmark test.

[q6] The provided results were understandable, but due to a lack of knowledge on the
subject it is difficult to turn it into insights.

[q7] All suggestions have been made during the study.

[q8] No further comments.

Participant #2

[o] It was not directly clear that the project should be downloaded from GitLab.

[o] Therewere again problemswith the Python environment on the provided laptop.

[c] The project is difficult to navigate. It requires too many clicks.

[c] It should be explained more clearly on how the functioning database should be
set up, in case that process is not performed by a database administrator.

[c] The percentages that are displayed during runtime are nice.

[c] The numbering in the manual is incorrect. It jumps from 4 to 6.

[o] It was not clear that the performance tests of QuestionMark: The Dataset Gen-
erator should not be run for the benchmarking procedure.

[c] The structure of QuestionMark: The Probabilistic Benchmark feels different
than that ofQuestionMark: TheDatasetGenerator. The structure of both should
be similar.

[q1] The benchmark itself is clear, but the indicated points should be improved.

124 Appendix D. User Study

[q2] The participant is content with themanual. It was clear and contained elaborate
instructions. Explanation on why some steps are required is lacking and should
be implemented.

[q4] The participant had basic Python knowledge but deemed that sufficient.

[q5] The participant had no prior knowledge on benchmarking and of probabilistic
database technology.

[q6] The overview provided by the results was clear.

[q7] Apart from the already provided feedback there are no further comments.

[q8] No further comments.

Participant #3

[c] The manual should state more clearly that a dataset needs to be generated.

[c] Make the reference to MANUAL.md within README.md a clickable link.

[c] Add additional explanation to the manual. You can hide the additional explana-
tion with markdown ensuring that it doesn’t clutter the page.

[c] It is annoying that the program requires a lot of clicks before you can actually
start the dataset generation and benchmarking process.

[c] The participant was not sure whether they would usually follow themanual step-
by-step or whether they would scan the product quickly and work out the func-
tioning based on their own expertise. The participant mentioned that the man-
ual reminded them of an IKEA-manual.

[c] The manual contains various typos.

[c] There should be a clearer explanation on the difference between QuestionMark:
The Dataset Generator and QuestionMark: The Probabilistic Benchmark.

[c] Themanual should indicate that the downloaded dataset should be included un-
zipped within the created dataset folder.

[c] The link to the WDC dataset website should be https instead of http.

[c] The overview on the performance of QuestionMark: The Dataset Generator
should contain several graphs to display the information more clearly.

[c] The information on how to include a new DBMS should be included in a drop
down text box, instead of its current location at the bottom.

[o] The manual zipping process should also be automated.

[c] The display of the progress should also be included in the resize dataset process.
It would also be better to show the processwith a progress bar instead of printing
the percentage.

[c] Themanual should providemore explanation on the included processes andwhy
they are performed. What does the dataset generator do? Why is it needed?
What are offers? Explain that it makes the downloaded dataset probabilistic.
Include more technical details on the functioning of the program.

D.4. Extensive Results 125

[c] Both programs should provide a clearer finished message.

[c] Include in QuestionMark: The Probabilistic Benchmark why it is required to
also use QuestionMark: The Dataset Generator.

[c] When reaching the step to check the settings in parameters.py, walk the partic-
ipants through the functioning of the parameters.

[c] Include a table with the included parameters and their functioning in MANUAL.md.

[c] Put the query explanations next to the query names in parameters.py.

[c] It is great that the benchmark contains sufficient good quality explanation and
documentation.

[c] The results in the metrics result file requires more explanation.

[c] In QuestionMark: The Probabilistic Benchmark, include a list with common er-
rors and how to fix them.

[c] If this experiment is a test on whether a monkey can follow a manual, then you
succeeded.

[q1] QuestionMark is a nice tool. It is properly set up, also with the documentation.
The participant was still as clueless about probabilistic databases as when they
began the study. Due to a lack of knowledge they could not really tell more about
the quality of the tooling. That felt like a shame.

[q2] The fact that there were four different markdown files was a bit annoying, that
automatically requires a lot of clicks.

[q3] The manual covered all necessary steps and is dummy-proof.

[q4] The participant did not havemuch experience with programming in Python, but
that knowledge was sufficient to work with the tool.

[q5] No knowledge on benchmarking or database technology.

[q6] The results were hard to understand. Especially the results with percentages
require additional explanation.

[q7] Some additional explanation on Docker and setting up the database environ-
ment would be good. Another metric that could be included is the expenses
required to run the benchmark test in terms of energy usage.

[q8] It would be nice to have a ten minute video on how to use the benchmark.

Participant #4

[c] The information displayed in performance.txt was not instantly clear. The in-
formation from database.ini.tmpl was clear.

[o] The participant could follow the steps and did not struggle much during the
benchmarking process. Additional explanation about the process was required.

[q1] The participant wanted to know why the use of probabilistic database technol-
ogy is interesting. As the end user is not by definition an expert on the subject
additional explanation on the technology and why it is beneficial to use it is de-
sired.

126 Appendix D. User Study

[q2] The manual was clear. It should be indicated where database.ini should be
put. Additional information on how to set up a functioning database connection
is also desired.

[q3] The software was easy to use, but additional explanation was required.

[q4] The participant was proficient with Python. The level was sufficient to run the
benchmark.

[q5] The participant had no previous knowledge on benchmarking or probabilistic
database technology.

[q6] The participant can understand the provided results, but does not know the
meaning of the results yet. Additional explanation is desired.

[q7] No further suggestions.

[q8] No further comments.

Participant #5

[o] The participant had no trouble understanding that the project should be down-
loaded from GitLab to use it.

[o] The participant took some time to read through the instructions. The participant
did not look at the explanation on what the benchmark does.

[o] The participant struggled to find the required files in the directory overview.

[o] The participant had no trouble understanding the instructions regarding the cre-
ation of database.ini.

[o] The participant could runQuestionMark: The Dataset Generator independently.

[c] The instructions regarding the database connection test in QuestionMark: The
Probabilistic Benchmark are unclear.

[q1] The participant thought the program was nice. The participant would like to
see more information on the required dependencies to run the program. What
Python version is required? What PostgreSQL version is required?

[q2] The introduction was clear and it was nice that all program parts had the same
structure. It was clear how the program should be run, but more information
on what it does is desired. The participant also wanted more information on the
dataset.

[q3] It was easy to use. Python knowledge is not really required. But for proper use,
more knowledge on the subject is required and more explanation on the code is
desired.

[q4] The participant is advanced in programming and also knows Python well. The
level was more than sufficient.

[q5] The participant had knowledge on databases and had worked with benchmark-
ing on a different area of research.

[q6] The provided results were understandable.

D.4. Extensive Results 127

[q7] Due to the previous experiences with benchmarking tools, the participant
thought that QuestionMark: The Probabilistic Benchmark would generate com-
plex queries that the user could tailor to fit their needs. The participant also
suggested to additionally generate the results in a JSON-format, so that the re-
sults could also be read by machines.

[q8] No further comments.

Participant #6

[c] The README feels fancy.

[o] The participant takes time to read the instructions.

[o] The participant noticed that the project had to be cloned before it could be used.

[o] The participant had no trouble finding the dataset on the WDC website.

[c] There are some inconsistencies within both projects regarding the name of files
and their location. This should be fixed.

[c] The required specifications for the project should be mentioned somewhere.
What Python version is required? Are there external dependencies? How should
you set up your virtual environment? Pip freeze can be used to obtain a require-
ments document.

[c] In both systems, the instruction to set up a working database connection is un-
clear. It should state something in the lines of: ’Make sure the databasemanage-
ment system of choice is running and is ready to accept connections’.

[c] In QuestionMark: The Probabilistic Benchmark, step 2 contains too many sub-
steps. For clarity, they should each have their own step.

[c] In parameters.py, put TEST on top of the document, as that is probably the
parameter that will be changed the most often.

[o] The participant wanted to know whether the program could be run from the
command line, which worked.

[c] When running the test, the message ’if no errors are shown then it works’ feels a
bit like a make do solution. There should be a better solution for that.

[c] The error messages thrown during the benchmark execution are slightly confus-
ing. It feels like something significant crashes and it is not directly clear that it
is part of the benchmark.

[c] The results in a .txt file are not automatable. You would like to have them in
either a CSV or JSON format. It also needs to be machine readable.

[c] The structure of QM_metric_results is also not directly clear. It is a lot of text.

[c] Instead of displaying the character count, there should be a standardisedmanner
for displaying the complexity of a query.

[c] In the graph containing the runtimes, the orange bars displaying the planning
times are very insignificant. It might be better to omit them.

128 Appendix D. User Study

[c] The results in QM_query_results.txt are not directly understandable. It is also
due to a lack of understanding of what the results are meant to say.

[q1] It was mostly following the manual. The parameter files are nice; you can alter
values centrally, it is highly configurable while still having the most used values
already included. The reference to both programs in the manual are clear. It is
understandable what should be done and the workflow is clear.

[q2] See the provided feedback. What was written was clear.

[q3] It was easy to use. It was nice that no command line arguments were included.
It is really run and go.

[q4] Very sufficient in Python. Participant commented they are overqualified.

[q5] The participant has slight knowledge on benchmarking and has amore extensive
database knowledge due to their study background.

[q6] The participant does not understand what information should be extracted from
the provided results. They were shown the extensive user manual, which made
the process of interpreting the results more clear for them.

[q7] Nothing more than what was already indicated.

[q8] No further comments.

E
Additional Details Case Study

This appendix provides additional information on the test setup and provides the raw
results for MayBMS and DuBio. The interpretation of these results can be found in
Section 6.1.

E.1. Docker images
BothMayBMS and DuBio were run in Docker. The below Docker images were used to
build a container with the DBMS. The hardware is a single machine with AMD Ryzen
5 PRO 6650U CPU@ 2.90 GHz, quad core, 16 GB RAM, and 512 GB SSD PCIe Gen4.

Docker image for DuBio

1 FROM postgres:latest
2

3 RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt install -y \
4 git \
5 make \
6 gcc \
7 postgresql -server-dev-all \
8 && rm -rf /var/lib/apt/lists/*
9

10 RUN git clone https://github.com/utwente-db/DuBio.git
11

12 WORKDIR /DuBio/pgbdd
13

14 RUN make install

Docker image for MayBMS

1 FROM debian:buster-slim
2

3 ENV PGDATA /usr/local/pgsql/data
4

5 RUN apt-get update && apt-get install -y \
6 git \
7 make \
8 gcc \
9 libreadline -dev \

129

130 Appendix E. Additional Details Case Study

10 zlib1g-dev \
11 bison \
12 flex \
13 && rm -rf /var/lib/apt/lists/*
14

15 RUN git clone https://git.code.sf.net/p/maybms/code maybms
16

17 # COPY maybms-src maybms
18

19 WORKDIR /maybms/postgresql -8.3.3
20

21 RUN ./configure CFLAGS=-fno-aggressive -loop-optimizations
22

23 RUN make
24

25 RUN make install
26

27 RUN adduser postgres
28

29 WORKDIR /usr/local/pgsql
30

31 RUN mkdir ./data && chown postgres ./data
32

33 USER postgres
34

35 RUN ./bin/initdb -D ./data
36

37 RUN sed -i "/^#listen_addresses/c\\listen_addresses = '*'" ./data/
↪→ postgresql.conf && \

38 echo "host all all 0.0.0.0/0 md5" >> ./data/pg_hba.conf
39

40 EXPOSE 5432
41

42 CMD ["./bin/postgres", "-c", "config_file=./data/postgresql.conf"]

E.2. Raw Results
This appendix contains the results as produced by QuestionMark: The Probabilistic
Benchmark.

The following results are included, in order of appearance:

• The metrics results file based on MayBMS queries.

• The metrics results file based on MayBMS statements.

• The metrics results file based on DuBio queries.

• The metrics results file based on DuBio statements.

• The query results file based on all MayBMS queries.

• The query results file based on all MayBMS statements.

• The query results file based on all DuBio queries

• The query results file based on all DuBio statements.

 # === #
 # ============== QuestionMark ============== #
 # === #
 # The metrics file.
 # Run on MayBMS.

 This file contains the metrics of this benchmark test.
 Please see 'QM_query_results.txt' for the results and runtimes of the queries.

 The included metrics produced the following results:
 +--+-------------------------+
 | METRIC | VALUE |
 +--+-------------------------+
 | The total size of the probability space is: | 3240 kB |
 +--+-------------------------+
 | The total size of the duplicate records is: | 875.5 kB |
 +--+-------------------------+
 | The percentage of data used for probabilistic representation: | 80.39% |
 +--+-------------------------+
 | The total number of characters needed for all queries: | 1412 characters |
 +--+-------------------------+
 | The percentage of successful queries is: | 92.31% |
 | (See below what functionality might be lacking) | |
 +--+-------------------------+
 | The total runtime of all queries is: | 122.76 ms |
 | (The sum of all time averages over 5 iterations) | |
 +--+-------------------------+

 # An overview of the queries that finished with their execution time:
 +-----------------+------+---------+---------------+----------------+
 | QUERY NAME | Done | Runtime | Planning Time | Execution Time |
 +-----------------+------+---------+---------------+----------------+
 | test_1 | x | 0.031 | - | - |
 +-----------------+------+---------+---------------+----------------+
 | insight_1 | x | 1.521 | - | - |
 +-----------------+------+---------+---------------+----------------+
 | insight_2 | x | 2.272 | - | - |
 +-----------------+------+---------+---------------+----------------+
 | insight_3 | x | 4.039 | - | - |
 +-----------------+------+---------+---------------+----------------+
 | insight_4 | x | 9.817 | - | - |
 +-----------------+------+---------+---------------+----------------+
 | insight_5 | x | 3.624 | - | - |
 +-----------------+------+---------+---------------+----------------+
 | insight_6 | x | 9.11 | - | - |
 +-----------------+------+---------+---------------+----------------+
 | probabilistic_1 | x | 49.65 | - | - |
 +-----------------+------+---------+---------------+----------------+
 | probabilistic_2 | x | 11.338 | - | - |
 +-----------------+------+---------+---------------+----------------+
 | probabilistic_3 | x | 14.41 | - | - |
 +-----------------+------+---------+---------------+----------------+
 | probabilistic_4 | | - | - | - |
 +-----------------+------+---------+---------------+----------------+
 | probabilistic_5 | x | 13.316 | - | - |
 +-----------------+------+---------+---------------+----------------+
 | probabilistic_6 | x | 3.637 | - | - |
 +-----------------+------+---------+---------------+----------------+

 # ==== Overview of errors and possible missing functionality. ==== #
 # Based on the errors thrown during benchmark testing, the batabase system might
 # lack support for one or more functionalities. Please also verify the actual error
 # thrown by the database manually, as that may provide a clearer indication of what
 # went wrong during benchmarking. If a memory allocation error is thrown, you can
 # alter the query to run it on the 'part' table to see if the functionality of the
 # query is supported.

 # The following queries have raised an error:

 QUERY #: probabilistic_4
 Functionality message: The DBMS might lack the ability to calculate the probability of a composed query result.
 It may struggle composing large and/or complex sentences/probability spaces.
 Error raised by DBMS:
column "variables" does not exist
LINE 2: SELECT category, conf() AS probability, variables
 ^

 # === #
 # ============== QuestionMark ============== #
 # === #
 # The metrics file.
 # Run on MayBMS.

 This file contains the metrics of this benchmark test.
 Please see 'QM_query_results.txt' for the results and runtimes of the queries.

 The included metrics produced the following results:
 +--+-------------------------+
 | METRIC | VALUE |
 +--+-------------------------+
 | The total size of the probability space is: | 3240 kB |
 +--+-------------------------+
 | The total size of the duplicate records is: | 875.5 kB |
 +--+-------------------------+
 | The percentage of data used for probabilistic representation: | 80.39% |
 +--+-------------------------+
 | The total number of characters needed for all queries: | 1761 characters |
 +--+-------------------------+
 | The percentage of successful queries is: | 100.0% |
 | (See below what functionality might be lacking) | |
 +--+-------------------------+
 | The total runtime of all queries is: | 111.05 ms |
 | (The sum of all time averages over 5 iterations) | |
 +--+-------------------------+

 # An overview of the queries that finished with their execution time:
 +-----------------+------+---------+---------------+----------------+
 | QUERY NAME | Done | Runtime | Planning Time | Execution Time |
 +-----------------+------+---------+---------------+----------------+
 | IUD_1_rollback | x | 0.569 | - | - |
 +-----------------+------+---------+---------------+----------------+
 | IUD_2_rollback | x | 106.54 | - | - |
 +-----------------+------+---------+---------------+----------------+
 | IUD_3_rollback | x | 2.56 | - | - |
 +-----------------+------+---------+---------------+----------------+
 | IUD_4_rollback | x | 0.68 | - | - |
 +-----------------+------+---------+---------------+----------------+
 | IUD_5_rollback | x | 0.703 | - | - |
 +-----------------+------+---------+---------------+----------------+

 # === #
 # ============== QuestionMark ============== #
 # === #
 # The metrics file.
 # Run on DuBio.

 This file contains the metrics of this benchmark test.
 Please see 'QM_query_results.txt' for the results and runtimes of the queries.

 The included metrics produced the following results:
 +--+-------------------------+
 | METRIC | VALUE |
 +--+-------------------------+
 | The total size of the _sentence column is: | 160 kB |
 +--+-------------------------+
 | The total size of the dict table is: | 784 kB |
 +--+-------------------------+
 | The percentage of data used for probabilistic representation: | 50.64% |
 +--+-------------------------+
 | The total number of characters needed for all queries: | 1846 characters |
 +--+-------------------------+
 | The percentage of successful queries is: | 92.31% |
 | (See below what functionality might be lacking) | |
 +--+-------------------------+
 | The total planning time of all queries is: | 1.64 ms |
 | (The sum of all time averages over 5 iterations) | |
 +--+-------------------------+
 | The total execution time of all queries is: | 472.02 ms |
 | (The sum of all time averages over 5 iterations) | |
 +--+-------------------------+

 # An overview of the queries that finished with their execution time:
 +-----------------+------+---------+---------------+----------------+
 | QUERY NAME | Done | Runtime | Planning Time | Execution Time |
 +-----------------+------+---------+---------------+----------------+
 | test_1 | x | - | 0.029 | 0.014 |
 +-----------------+------+---------+---------------+----------------+
 | insight_1 | x | - | 0.021 | 0.66 |
 +-----------------+------+---------+---------------+----------------+
 | insight_2 | x | - | 0.03 | 0.801 |
 +-----------------+------+---------+---------------+----------------+
 | insight_3 | x | - | 0.046 | 1.583 |
 +-----------------+------+---------+---------------+----------------+
 | insight_4 | x | - | 0.056 | 0.775 |
 +-----------------+------+---------+---------------+----------------+
 | insight_5 | x | - | 0.044 | 0.542 |
 +-----------------+------+---------+---------------+----------------+
 | insight_6 | x | - | 0.096 | 102.66 |
 +-----------------+------+---------+---------------+----------------+
 | probabilistic_1 | x | - | 0.097 | 102.78 |
 +-----------------+------+---------+---------------+----------------+
 | probabilistic_2 | x | - | 0.079 | 101.2 |
 +-----------------+------+---------+---------------+----------------+
 | probabilistic_3 | x | - | 0.09 | 103.02 |
 +-----------------+------+---------+---------------+----------------+
 | probabilistic_4 | | - | - | - |
 +-----------------+------+---------+---------------+----------------+
 | probabilistic_5 | x | - | 0.47 | 46.812 |
 +-----------------+------+---------+---------------+----------------+
 | probabilistic_6 | x | - | 0.579 | 11.178 |
 +-----------------+------+---------+---------------+----------------+

 # ==== Overview of errors and possible missing functionality. ==== #
 # Based on the errors thrown during benchmark testing, the batabase system might
 # lack support for one or more functionalities. Please also verify the actual error
 # thrown by the database manually, as that may provide a clearer indication of what
 # went wrong during benchmarking. If a memory allocation error is thrown, you can
 # alter the query to run it on the 'part' table to see if the functionality of the
 # query is supported.

 # The following queries have raised an error:

 QUERY #: probabilistic_4
 Functionality message: The DBMS might lack the ability to calculate the probability of a composed query result.
 It may struggle composing large and/or complex sentences/probability spaces.
 Error raised by DBMS:
column "timeout" does not exist
LINE 3: SELECT timeout, category, AGG_OR(_sentence) AS sente...
 ^

 # === #
 # ============== QuestionMark ============== #
 # === #
 # The metrics file.
 # Run on DuBio.

 This file contains the metrics of this benchmark test.
 Please see 'QM_query_results.txt' for the results and runtimes of the queries.

 The included metrics produced the following results:
 +--+-------------------------+
 | METRIC | VALUE |
 +--+-------------------------+
 | The total size of the _sentence column is: | 160 kB |
 +--+-------------------------+
 | The total size of the dict table is: | 784 kB |
 +--+-------------------------+
 | The percentage of data used for probabilistic representation: | 50.86% |
 +--+-------------------------+
 | The total number of characters needed for all queries: | 2138 characters |
 +--+-------------------------+
 | The percentage of successful queries is: | 100.0% |
 | (See below what functionality might be lacking) | |
 +--+-------------------------+
 | The total planning time of all queries is: | 0.26 ms |
 | (The sum of all time averages over 5 iterations) | |
 +--+-------------------------+
 | The total execution time of all queries is: | 10.63 ms |
 | (The sum of all time averages over 5 iterations) | |
 +--+-------------------------+

 # An overview of the queries that finished with their execution time:
 +-----------------+------+---------+---------------+----------------+
 | QUERY NAME | Done | Runtime | Planning Time | Execution Time |
 +-----------------+------+---------+---------------+----------------+
 | IUD_1_rollback | x | - | 0.067 | 2.298 |
 +-----------------+------+---------+---------------+----------------+
 | IUD_2_rollback | x | - | 0.069 | 4.908 |
 +-----------------+------+---------+---------------+----------------+
 | IUD_3_rollback | x | - | 0.041 | 1.128 |
 +-----------------+------+---------+---------------+----------------+
 | IUD_4_rollback | x | - | 0.043 | 1.104 |
 +-----------------+------+---------+---------------+----------------+
 | IUD_5_rollback | x | - | 0.037 | 1.194 |
 +-----------------+------+---------+---------------+----------------+

 # === #
 # ============== QuestionMark ============== #
 # === #
 # The query results file.
 # Run on MayBMS.

This file contains the query results and runtimes of this benchmark test.
The query plan and average run time are produced by PostgreSQL EXPLAIN ANALYSE.
Please see 'QM_metrics_results' for the results of the metrics.

============== test_1 ============== #

 SELECT id
 FROM offers
 LIMIT 10;

+-------+--------+---------+-----+--------+---------+------+
| id | _v0 | _d0 | _p0 | _v1 | _d1 | _p1 |
+-------+--------+---------+-----+--------+---------+------+
16993	393573	1092388	1.0	392570	1090230	0.2
20537	393574	1092808	1.0	392836	1090650	0.5
27050	393575	1092606	1.0	392835	1090448	0.5
38200	393576	1093463	1.0	392699	1091305	1.0
59437	393577	1092522	1.0	392940	1090364	1.0
71688	393578	1092798	1.0	392480	1090640	1.0
86426	393579	1093049	1.0	393025	1090891	0.25
87222	393580	1093366	1.0	392869	1091208	0.2
88301	393581	1092456	1.0	393515	1090298	0.2
88391	393582	1091682	1.0	392987	1089524	0.5
+-------+--------+---------+-----+--------+---------+------+

Average total time over 5 iterations: 0.031 ms.
+--+
| QUERY PLAN |
+--+
| Limit (cost=0.00..0.79 rows=10 width=32) (actual time=0.005..0.028 rows=10 loops=1) |
+--+

============== insight_1 ============== #

 SELECT *
 FROM offers;

+----+------------+-------+-------+----------+-------------+-------+--------------+-----+
| id | cluster_id | title | brand | category | description | price | identifiers | ... |
+----+------------+-------+-------+----------+-------------+-------+--------------+-----+
| | | | | | | | | |
+----+------------+-------+-------+----------+-------------+-------+--------------+-----+
The first 20 out of 7947 rows are shown.
Some returned records were too large to display. This query returned 7947 rows.

Average total time over 5 iterations: 1.521 ms.
+---------------------------------+
| This query returned no records. |
+---------------------------------+

============== insight_2 ============== #

 SELECT COUNT(*) as records,
 COUNT(DISTINCT(id)) as offers,
 COUNT(DISTINCT(cluster_id)) as clusters
 FROM offers_setup;

+---------+--------+----------+
| records | offers | clusters |
+---------+--------+----------+
| 2311 | 1653 | 1229 |
+---------+--------+----------+

Average total time over 5 iterations: 2.272 ms.
+--+
| QUERY PLAN |
+--+
| Aggregate (cost=185.45..185.46 rows=1 width=16) (actual time=2.738..2.738 rows=1 loops=1) |
+--+

============== insight_3 ============== #

 SELECT cluster_size, COUNT(cluster_size) as amount
 FROM (
 SELECT COUNT(DISTINCT(id)) as cluster_size
 FROM offers_setup
 GROUP BY cluster_id
) as cluster_sizes
 GROUP BY cluster_size
 ORDER BY cluster_size ASC;

+--------------+--------+
| cluster_size | amount |
+--------------+--------+
1	886
2	187
3	72
4	41
5	43
+--------------+--------+

Average total time over 5 iterations: 4.039 ms.
+--+
| QUERY PLAN |
+--+
| Sort (cost=358.50..359.00 rows=200 width=8) (actual time=3.996..3.997 rows=5 loops=1) |
| Sort Key: (count(DISTINCT offers_setup.id)) |
| Sort Method: quicksort Memory: 25kB |
| -> HashAggregate (cost=348.36..350.86 rows=200 width=8) (actual time=3.990..3.993 rows=5 loops=1) |
| -> GroupAggregate (cost=297.23..329.92 rows=1229 width=16) (actual time=1.274..3.690 rows=1229 loops=1)|
| -> Sort (cost=297.23..303.01 rows=2311 width=16) (actual time=1.267..1.403 rows=2311 loops=1) |
| Sort Key: offers_setup.cluster_id |
| Sort Method: quicksort Memory: 205kB |
+--+

============== insight_4 ============== #

 SELECT ROUND(all_certain::decimal / all_offers::decimal, 4) * 100 AS certain_percentage
 FROM (
 SELECT COUNT(id) AS all_offers
 FROM offers_setup
) AS count_all, (
 SELECT COUNT(id) AS all_certain
 FROM (
 SELECT id, tconf() AS confidence
 FROM offers
) AS confidences
 WHERE confidence = 1
) AS count_cert;

+--------------------+
| certain_percentage |
+--------------------+
| 32.5400 |
+--------------------+

Average total time over 5 iterations: 9.817 ms.
+--+
| QUERY PLAN |
+--+
| Nested Loop (cost=881.93..882.00 rows=1 width=16) (actual time=9.477..9.478 rows=1 loops=1) |
| -> Aggregate (cost=173.89..173.90 rows=1 width=8) (actual time=0.652..0.652 rows=1 loops=1) |
| -> Seq Scan on offers_setup (cost=0.00..168.11 rows=2311 width=8) (actual time=0.006..0.379 rows=2311 |
| loops=1) |
| -> Aggregate (cost=708.04..708.05 rows=1 width=8) (actual time=8.816..8.816 rows=1 loops=1) |
| -> Seq Scan on offers (cost=0.00..707.94 rows=40 width=8) (actual time=0.009..8.734 rows=752 loops=1) |
+--+

============== insight_5 ============== #

 SELECT id, tconf(*), _v0
 FROM offers
 WHERE _v1 = 52379
 AND _d1 = 548185;

+---------------------------------+
| This query returned no records. |
+---------------------------------+

Average total time over 5 iterations: 3.624 ms.
+---+
| QUERY PLAN |
+---+
| Seq Scan on offers (cost=0.00..668.21 rows=1 width=32) (actual time=2.582..2.582 rows=0 loops=1) |
+---+

============== insight_6 ============== #

 SELECT round((AVG(tconf()) * 100)::NUMERIC, 4) AS certainty_of_the_dataset
 FROM offers;

+--------------------------+
| certainty_of_the_dataset |
+--------------------------+
| 17.3665 |
+--------------------------+

Average total time over 5 iterations: 9.11 ms.
+--+
| QUERY PLAN |
+--+
| Aggregate (cost=648.34..648.37 rows=1 width=24) (actual time=9.141..9.141 rows=1 loops=1) |
+--+

============== probabilistic_1 ============== #

 SELECT round(tconf()::decimal, 4) AS probability, *
 FROM offers
 ORDER BY probability DESC;

+-------------+----+------------+-------+-------+----------+-------------+-------+--------------+-----+
| probability | id | cluster_id | title | brand | category | description | price | identifiers | ... |
+-------------+----+------------+-------+-------+----------+-------------+-------+--------------+-----+
| | | | | | | | | | |
+-------------+----+------------+-------+-------+----------+-------------+-------+--------------+-----+
The first 20 out of 7947 rows are shown.
Some returned records were too large to display. This query returned 7947 rows.

Average total time over 5 iterations: 49.65 ms.
+--+
| QUERY PLAN |
+--+
| Sort (cost=3062.62..3082.49 rows=7947 width=511) (actual time=38.528..43.989 rows=7947 loops=1) |
| Sort Key: (round((tconf((tconf(_v0, _d0, _p0, _v1, _d1, _p1) * 1::real)))::numeric, 4)) |
| Sort Method: external merge Disk: 3920kB |
+--+

============== probabilistic_2 ============== #

 SELECT category, ECOUNT() AS expected_count
 FROM offers
 GROUP BY category
 ORDER BY expected_count DESC;

+----------------------------+----------------+
| category | expected_count |
+----------------------------+----------------+
Tools_and_Home_Improvement	161.539
Home_and_Garden	137.941
Office_Products	133.837
Clothing	118.032
Automotive	104.643
Other_Electronics	76.658
Books	62.8282
Shoes	61.7045
Sports_and_Outdoors	56.8202
Computers_and_Accessories	51.571
Musical_Instruments	48.5879
Jewelry	45.7761
Health_and_Beauty	42.7384
Grocery_and_Gourmet_Food	37.38
Camera_and_Photo	35.6586
Luggage_and_Travel_Gear	34.4583
Toys_and_Games	31.8327
CDs_and_Vinyl	28.6636
Cellphones_and_Accessories	25.75
+----------------------------+----------------+
The first 20 out of 25 rows are shown.

Average total time over 5 iterations: 11.338 ms.
+--+
| QUERY PLAN |
+--+
| Sort (cost=669.29..669.35 rows=25 width=39) (actual time=10.914..10.916 rows=25 loops=1) |
| Sort Key: (sum(tconf((tconf(_v0, _d0, _p0, _v1, _d1, _p1) * 1::real)))) |
| Sort Method: quicksort Memory: 26kB |
| -> HashAggregate (cost=668.20..668.70 rows=25 width=39) (actual time=10.893..10.900 rows=25 loops=1) |
+--+

============== probabilistic_3 ============== #

 SELECT cluster_id, esum(id), COUNT(id) AS number_of_offers
 FROM offers
 GROUP BY cluster_id
 ORDER BY number_of_offers DESC;

+------------+-------------+------------------+
| cluster_id | esum | number_of_offers |
+------------+-------------+------------------+
81	38858800.0	780
30	88758700.0	705
41	40992700.0	616
57	39380500.0	352
177	18318000.0	234
31	111037000.0	210
42	70598000.0	182
82	45020700.0	180
49	58874300.0	176
32	47036100.0	150
140	19146800.0	140
46	15675100.0	140
17	26618500.0	133
162	13456800.0	133
58	114070000.0	125
43	53461800.0	112
83	9304770.0	105
59	106551000.0	94
178	23974600.0	84
+------------+-------------+------------------+
The first 20 out of 1229 rows are shown.

Average total time over 5 iterations: 14.41 ms.
+---+
| QUERY PLAN |
+---+
| Sort (cost=744.35..746.17 rows=726 width=40) (actual time=15.869..15.935 rows=1229 loops=1) |
| Sort Key: (count(id)) |
| Sort Method: quicksort Memory: 145kB |
| -> HashAggregate (cost=688.07..709.85 rows=726 width=40) (actual time=15.128..15.547 rows=1229 loops=1) |
+---+

============== probabilistic_4 ============== #

 SELECT category, conf() AS probability, variables
 FROM offers
 GROUP BY category
 ORDER BY probability DESC;

The following error occurred while executing this query:
column "variables" does not exist
LINE 2: SELECT category, conf() AS probability, variables
 ^

============== probabilistic_5 ============== #

 SELECT *, round(tconf()::NUMERIC, 4) AS probability
 FROM offers
 WHERE cluster_id IN (
 SELECT cluster_id
 FROM offers_setup
 WHERE title LIKE '%card%'
 OR description LIKE '%card%'
)
 ORDER BY probability DESC
 LIMIT 1;

+----+------------+-------+-------+----------+-------------+-------+--------------+-----+
| id | cluster_id | title | brand | category | description | price | identifiers | ... |
+----+------------+-------+-------+----------+-------------+-------+--------------+-----+
| | | | | | | | | |
+----+------------+-------+-------+----------+-------------+-------+--------------+-----+
Some returned records were too large to display. This query returned 1 rows.

Average total time over 5 iterations: 13.316 ms.
+--+
| QUERY PLAN |
+--+
| Limit (cost=870.09..870.09 rows=1 width=511) (actual time=13.137..13.137 rows=1 loops=1) |
| -> Sort (cost=870.09..871.27 rows=472 width=511) (actual time=13.137..13.137 rows=1 loops=1) |
| Sort Key: (round((tconf((tconf(offers._v0, offers._d0, offers._p0, offers._v1, offers._d1, offers._p1) * |
| 1::real)))::numeric, 4)) |
| Sort Method: top-N heapsort Memory: 26kB |
| -> Hash IN Join (cost=181.38..867.73 rows=472 width=511) (actual time=2.917..11.272 rows=2880 loops=1) |
| Hash Cond: (offers.cluster_id = offers_setup.cluster_id) |
| -> Seq Scan on offers (cost=0.00..628.47 rows=7947 width=511) (actual time=0.002..1.125 rows=7947|
| loops=1) |
| -> Hash (cost=179.66..179.66 rows=137 width=8) (actual time=2.896..2.896 rows=153 loops=1) |
| -> Seq Scan on offers_setup (cost=0.00..179.66 rows=137 width=8) (actual time=0.102..2.859 |
| rows=153 loops=1) |
+--+

============== probabilistic_6 ============== #

 SELECT id, cluster_id, brand, category, identifiers
 FROM offers
 WHERE title LIKE '%card%'
 OR description LIKE '%card%'
 AND tconf() > 0.45
 AND tconf() < 0.55;

+----------+------------+-----+--------+---------+-----------+--------+---------+------------+
| id | cluster_id | ... | _v0 | _d0 | _p0 | _v1 | _d1 | _p1 |
+----------+------------+-----+--------+---------+-----------+--------+---------+------------+
1143303	1182		393672	1092102	1.0	392371	1089944	0.2
2148295	1032		393770	1092196	1.0	393399	1090038	0.2
2548259	394		393801	1093712	1.0	393107	1091554	1.0
2650851	304		393810	1091695	1.0	392842	1089537	1.0
3007245	30		393839	1092863	0.054431	393005	1090705	0.00710873
3007245	30		393839	1092863	0.054431	393005	1089648	0.0144388
3007245	30		393839	1092863	0.054431	393005	1090951	0.0165973
3007245	30		393839	1092863	0.054431	393005	1090951	0.0165973
3007245	30		393839	1092863	0.054431	393005	1091526	0.0336988
3007245	30		393839	1092863	0.054431	393005	1091526	0.0336988
3007245	30		393839	1092863	0.054431	393005	1091605	0.038729
3007245	30		393839	1092863	0.054431	393005	1089958	0.0786326
3007245	30		393839	1092863	0.054431	392378	1091570	0.25
3007245	30		393839	1092863	0.054431	392378	1091570	0.25
3007245	30		393839	1092863	0.054431	392378	1091570	0.25
3007245	30		393839	1092863	0.054431	392378	1091570	0.25
3007245	30		393839	1092863	0.054431	392418	1089508	0.333333
3007245	30		393839	1092863	0.054431	392418	1089508	0.333333
3007245	30		393839	1092863	0.054431	392418	1089508	0.333333
+----------+------------+-----+--------+---------+-----------+--------+---------+------------+
The first 20 out of 838 rows are shown.
Some returned records were too large to display. This query returned 838 rows.

Average total time over 5 iterations: 3.637 ms.
+--+
| QUERY PLAN |
+--+
| Seq Scan on offers (cost=0.00..648.34 rows=707 width=101) (actual time=0.355..3.325 rows=838 loops=1) |
+--+

 # === #
 # ============== QuestionMark ============== #
 # === #
 # The query results file.
 # Run on MayBMS.

This file contains the query results and runtimes of this benchmark test.
The query plan and average run time are produced by PostgreSQL EXPLAIN ANALYSE.
Please see 'QM_metrics_results' for the results of the metrics.

============== IUD_1_rollback ============== #

 INSERT INTO offers_setup (id, cluster_id, title, brand, category, description, price, identifiers,
 keyvaluepairs, spectablecontent, world_prob, attribute_prob)
 VALUES(-464, 77, ..., 0.42911, 0.629),
 (-466, 77, ..., 0.5, 0.246),
 (-468, 77, ..., 0.32635, 0.629),
 (-469, 77, ..., 0.5, 0.125),
 (-471, 77, ..., 0.24454, 0.629);

Average total time over 5 iterations: 0.569 ms.
+---------------------------------+
| This query returned no records. |
+---------------------------------+

============== IUD_2_rollback ============== #

 INSERT INTO offers_setup (id, cluster_id, title, brand, category, description, price, identifiers,
 keyvaluepairs, spectablecontent, world_prob, attribute_prob)
 SELECT * FROM bulk_insert;

Average total time over 5 iterations: 106.54 ms.
+---------------------------------+
| This query returned no records. |
+---------------------------------+

============== IUD_3_rollback ============== #

 UPDATE offers
 SET world_prob = 0.345,
 attribute_prob = 0.3992
 WHERE _d0 = 615777
 AND _d1 = 613619;

 UPDATE offers
 SET world_prob = 0.345,
 attribute_prob = 0.6008
 WHERE _d0 = 615777
 and _d1 = 613841;

 UPDATE offers
 SET world_prob = 0.1254,
 attribute_prob = 0.5
 WHERE _d0 = 615999
 AND _d1 = 613619;

 UPDATE offers
 SET world_prob = 0.1254,
 attribute_prob = 0.5
 WHERE _d0 = 615999
 and _d1 = 613841;

 UPDATE offers
 SET world_prob = 0.487,
 attribute_prob = 0.4300
 WHERE _d0 = 615850
 and _d1 = 613395;

 UPDATE offers
 SET world_prob = 0.487,
 attribute_prob = 0.5700
 WHERE _d0 = 615850
 AND _d1 = 613692;

 UPDATE offers
 SET world_prob = 0.487,
 attribute_prob = 0.4300
 WHERE _d0 = 615999
 and _d1 = 613841;

 UPDATE offers
 SET world_prob = 0.487
 WHERE _d0 = 615553
 AND _d1 = 613692;

 UPDATE offers
 SET world_prob = 0.487
 WHERE _d0 = 615553
 and _d1 = 613395;

 UPDATE offers
 SET world_prob = 0.329
 WHERE _d0 = 614032
 AND _d1 = 612733;

 UPDATE offers
 SET world_prob = 0.329
 WHERE _d0 = 614032
 and _d1 = 611874;

 UPDATE offers
 SET world_prob = 0.184
 WHERE _d0 = 615197
 AND _d1 = 612733;

 UPDATE offers
 SET world_prob = 0.184
 WHERE _d0 = 615197
 and _d1 = 613039;

Average total time over 5 iterations: 2.508 ms.
+--+
| QUERY PLAN |
+--+
| Seq Scan on offers (cost=0.00..668.21 rows=1 width=501) (actual time=2.501..2.501 rows=0 loops=1) |
+--+

Average total time over 5 iterations: 2.494 ms.
+--+
| QUERY PLAN |
+--+
| Seq Scan on offers (cost=0.00..668.21 rows=1 width=501) (actual time=2.533..2.533 rows=0 loops=1) |
+--+

Average total time over 5 iterations: 2.576 ms.
+--+
| QUERY PLAN |
+--+
| Seq Scan on offers (cost=0.00..668.21 rows=1 width=501) (actual time=2.453..2.453 rows=0 loops=1) |
+--+

Average total time over 5 iterations: 2.577 ms.
+--+
| QUERY PLAN |
+--+
| Seq Scan on offers (cost=0.00..668.21 rows=1 width=501) (actual time=2.542..2.542 rows=0 loops=1) |
+--+

Average total time over 5 iterations: 2.708 ms.
+--+
| QUERY PLAN |
+--+
| Seq Scan on offers (cost=0.00..668.21 rows=1 width=501) (actual time=2.750..2.750 rows=0 loops=1) |
+--+

Average total time over 5 iterations: 2.852 ms.
+--+
| QUERY PLAN |
+--+
| Seq Scan on offers (cost=0.00..668.21 rows=1 width=501) (actual time=2.974..2.974 rows=0 loops=1) |
+--+

Average total time over 5 iterations: 2.925 ms.
+--+
| QUERY PLAN |
+--+
| Seq Scan on offers (cost=0.00..668.21 rows=1 width=501) (actual time=3.075..3.075 rows=0 loops=1) |
+--+

Average total time over 5 iterations: 2.995 ms.
+--+
| QUERY PLAN |
+--+
| Seq Scan on offers (cost=0.00..668.21 rows=1 width=509) (actual time=2.988..2.988 rows=0 loops=1) |
+--+

Average total time over 5 iterations: 2.849 ms.
+--+
| QUERY PLAN |
+--+
| Seq Scan on offers (cost=0.00..668.21 rows=1 width=509) (actual time=2.990..2.990 rows=0 loops=1) |
+--+

Average total time over 5 iterations: 2.765 ms.
+--+
| QUERY PLAN |
+--+
| Seq Scan on offers (cost=0.00..668.21 rows=1 width=509) (actual time=2.781..2.781 rows=0 loops=1) |
+--+

Average total time over 5 iterations: 2.813 ms.
+--+
| QUERY PLAN |
+--+
| Seq Scan on offers (cost=0.00..668.21 rows=1 width=509) (actual time=2.636..2.636 rows=0 loops=1) |
+--+

Average total time over 5 iterations: 2.593 ms.
+--+
| QUERY PLAN |
+--+
| Seq Scan on offers (cost=0.00..668.21 rows=1 width=509) (actual time=2.626..2.626 rows=0 loops=1) |
+--+

Average total time over 5 iterations: 2.56 ms.
+--+
| QUERY PLAN |
+--+
| Seq Scan on offers (cost=0.00..668.21 rows=1 width=509) (actual time=2.469..2.469 rows=0 loops=1) |
+--+

============== IUD_4_rollback ============== #

 UPDATE offers_setup
 SET cluster_id = max_cluster.max_id,
 world_prob = 1,
 attribute_prob = 1
 FROM (
 SELECT max(cluster_id) + 1 AS max_id
 FROM offers_setup
) as max_cluster
 WHERE id = 12071001;

 UPDATE offers_setup
 SET cluster_id = max_cluster.max_id,
 world_prob = 1,
 attribute_prob = 1
 FROM (
 SELECT max(cluster_id) + 1 AS max_id
 FROM offers_setup
) as max_cluster
 WHERE id = 16457529;

 UPDATE offers_setup
 SET world_prob = 0.63,
 attribute_prob = 0.5
 WHERE id = 7339350;

 UPDATE offers_setup
 SET world_prob = 0.63,
 attribute_prob = 0.5
 WHERE id = 12326926;

Average total time over 5 iterations: 1.692 ms.
+--+
| QUERY PLAN |
+--+
| Nested Loop (cost=885.03..1770.09 rows=1 width=440) (actual time=1.325..1.637 rows=1 loops=1) |
| -> Seq Scan on offers_setup (cost=0.00..885.02 rows=1 width=432) (actual time=0.328..0.640 rows=1 loops=1) |
| Filter: (id = 12071001) |
| -> Aggregate (cost=885.03..885.04 rows=1 width=8) (actual time=0.993..0.993 rows=1 loops=1) |
+--+

Average total time over 5 iterations: 1.724 ms.
+--+
| QUERY PLAN |
+--+
| Nested Loop (cost=885.03..1770.09 rows=1 width=440) (actual time=1.480..1.810 rows=1 loops=1) |
| -> Seq Scan on offers_setup (cost=0.00..885.02 rows=1 width=432) (actual time=0.359..0.689 rows=1 loops=1) |
| Filter: (id = 16457529) |
| -> Aggregate (cost=885.03..885.04 rows=1 width=8) (actual time=1.118..1.118 rows=1 loops=1) |
+--+

Average total time over 5 iterations: 0.746 ms.
+--+
| QUERY PLAN |
+--+
| Seq Scan on offers_setup (cost=0.00..886.23 rows=1 width=440) (actual time=0.346..0.768 rows=1 loops=1) |
+--+

Average total time over 5 iterations: 0.68 ms.
+--+
| QUERY PLAN |
+--+
| Seq Scan on offers_setup (cost=0.00..887.42 rows=1 width=440) (actual time=0.330..0.740 rows=1 loops=1) |
+--+

============== IUD_5_rollback ============== #

 DELETE FROM offers_setup
 WHERE cluster_id = 41;

Average total time over 5 iterations: 0.703 ms.
+---+
| QUERY PLAN |
+---+
| Seq Scan on offers_setup (cost=0.00..887.42 rows=225 width=6) (actual time=0.068..0.838 rows=44 loops=1) |
+---+

 # === #
 # ============== QuestionMark ============== #
 # === #
 # The query results file.
 # Run on DuBio.

This file contains the query results and runtimes of this benchmark test.
The query plan and average run time are produced by PostgreSQL EXPLAIN ANALYSE.
Please see 'QM_metrics_results' for the results of the metrics.

============== test_1 ============== #

 SELECT id
 FROM offers
 LIMIT 10;

+----------+
| id |
+----------+
| 12270851 |
| 15769078 |
| 10571389 |
| 9389315 |
| 14030659 |
| 11592947 |
| 15165064 |
| 3304586 |
| 11698262 |
| 15756894 |
+----------+

Average planning time over 5 iterations: 0.029 ms.
Average execution time over 5 iterations: 0.014 ms.

+--+
| QUERY PLAN |
+--+
| Limit (cost=0.00..0.78 rows=10 width=8) (actual time=0.002..0.004 rows=10 loops=1) |
| -> Seq Scan on offers (cost=0.00..135.25 rows=1725 width=8) (actual time=0.002..0.003 rows=10 loops=1) |
+--+

============== insight_1 ============== #

 SELECT *
 FROM offers;

 SELECT print(dict) FROM _dict WHERE name='mydict';

+--+
| print |
+--+
+--+
Some returned records were too large to display. This query returned 1 rows.

Average planning time over 5 iterations: 0.035 ms.
Average execution time over 5 iterations: 0.288 ms.

+--+
| QUERY PLAN |
+--+
| Seq Scan on offers (cost=0.00..135.25 rows=1725 width=511) (actual time=0.002..0.106 rows=1725 loops=1) |
+--+

Average planning time over 5 iterations: 0.021 ms.
Average execution time over 5 iterations: 0.66 ms.

+---+
| QUERY PLAN |
+---+
| Seq Scan on _dict (cost=0.00..33.02 rows=1 width=32) (actual time=0.963..0.965 rows=1 loops=1) |
| Filter: ((name)::text = 'mydict'::text) |
+---+

============== insight_2 ============== #

 SELECT COUNT(*) as records,
 COUNT(DISTINCT(id)) as offers,
 COUNT(DISTINCT(cluster_id)) as clusters
 FROM offers;

+---------+--------+----------+
| records | offers | clusters |
+---------+--------+----------+
| 1725 | 1653 | 1111 |
+---------+--------+----------+

Average planning time over 5 iterations: 0.03 ms.
Average execution time over 5 iterations: 0.801 ms.

+---+
| QUERY PLAN |
+---+
| Aggregate (cost=148.19..148.20 rows=1 width=24) (actual time=0.485..0.486 rows=1 loops=1) |
| -> Seq Scan on offers (cost=0.00..135.25 rows=1725 width=16) (actual time=0.002..0.110 rows=1725 loops=1) |
+---+

============== insight_3 ============== #

 SELECT cluster_size, COUNT(cluster_size) as amount
 FROM (
 SELECT COUNT(DISTINCT(id)) as cluster_size
 FROM offers
 GROUP BY cluster_id
) as cluster_sizes
 GROUP BY cluster_size
 ORDER BY cluster_size ASC;

+--------------+--------+
| cluster_size | amount |
+--------------+--------+
1	824
2	126
3	56
4	44
5	61
+--------------+--------+

Average planning time over 5 iterations: 0.046 ms.
Average execution time over 5 iterations: 1.583 ms.

+--+
| QUERY PLAN |
+--+
| Sort (cost=278.35..278.85 rows=200 width=16) (actual time=1.262..1.263 rows=5 loops=1) |
| Sort Key: (count(DISTINCT offers.id)) |
| Sort Method: quicksort Memory: 25kB |
| -> HashAggregate (cost=268.70..270.70 rows=200 width=16) (actual time=1.259..1.260 rows=5 loops=1) |
| Group Key: count(DISTINCT offers.id) |
| Batches: 1 Memory Usage: 40kB |
| -> GroupAggregate (cost=227.99..252.04 rows=1111 width=16) (actual time=0.355..1.121 rows=1111 loops=1)|
| Group Key: offers.cluster_id |
| -> Sort (cost=227.99..232.30 rows=1725 width=16) (actual time=0.349..0.406 rows=1725 loops=1) |
| Sort Key: offers.cluster_id |
| Sort Method: quicksort Memory: 143kB |
| -> Seq Scan on offers (cost=0.00..135.25 rows=1725 width=16) (actual time=0.003..0.174 |
| rows=1725 loops=1) |
+--+

============== insight_4 ============== #

 SELECT ROUND(COUNT(CASE WHEN istrue(_sentence) THEN 1 END)::decimal / COUNT(*)::decimal, 4) * 100 AS
certain_percentage
 FROM offers;

+--------------------+
| certain_percentage |
+--------------------+
| 47.7700 |
+--------------------+

Average planning time over 5 iterations: 0.056 ms.
Average execution time over 5 iterations: 0.775 ms.

+---+
| QUERY PLAN |
+---+
| Aggregate (cost=148.19..148.21 rows=1 width=32) (actual time=0.368..0.368 rows=1 loops=1) |
| -> Seq Scan on offers (cost=0.00..135.25 rows=1725 width=94) (actual time=0.002..0.094 rows=1725 loops=1) |
+---+

============== insight_5 ============== #

 SELECT o.id, prob(dict, 'w43=1') AS probability, hasrva(_sentence, 'w43=1')
 FROM offers o, _dict d
 WHERE hasrva(_sentence, 'w43=1');

+----------+--------------------+--------+
| id | probability | hasrva |
+----------+--------------------+--------+
| 11119066 | 0.5479632116277885 | True |
+----------+--------------------+--------+

Average planning time over 5 iterations: 0.044 ms.
Average execution time over 5 iterations: 0.542 ms.

+--+
| QUERY PLAN |
+--+
| Nested Loop (cost=0.00..181.20 rows=575 width=17) (actual time=0.124..0.462 rows=1 loops=1) |
| -> Seq Scan on _dict d (cost=0.00..33.01 rows=1 width=18) (actual time=0.013..0.014 rows=1 loops=1) |
| -> Seq Scan on offers o (cost=0.00..139.56 rows=575 width=102) (actual time=0.018..0.356 rows=1 loops=1) |
| Filter: _bdd_has_property(_sentence, 3, 'w43=1'::cstring) |
| Rows Removed by Filter: 1724 |
+--+

============== insight_6 ============== #

 SELECT AVG(probability) AS certainty_of_the_dataset
 FROM (
 SELECT round(prob(d.dict, o._sentence)::NUMERIC, 4) AS probability
 FROM offers o, _dict d
 WHERE d.name = 'mydict'
) AS probabilities;

+--------------------------+
| certainty_of_the_dataset |
+--------------------------+
| 0.70122568115942028986 |
+--------------------------+

Average planning time over 5 iterations: 0.096 ms.
Average execution time over 5 iterations: 102.66 ms.

+--+
| QUERY PLAN |
+--+
| Aggregate (cost=202.76..202.77 rows=1 width=32) (actual time=104.198..104.201 rows=1 loops=1) |
| -> Nested Loop (cost=0.00..185.51 rows=1725 width=112) (actual time=0.023..1.480 rows=1725 loops=1) |
| -> Seq Scan on _dict d (cost=0.00..33.01 rows=1 width=18) (actual time=0.021..0.023 rows=1 loops=1) |
| Filter: ((name)::text = 'mydict'::text) |
| -> Seq Scan on offers o (cost=0.00..135.25 rows=1725 width=94) (actual time=0.001..0.201 rows=1725 |
| loops=1) |
+--+

============== probabilistic_1 ============== #

 SELECT round(prob(d.dict, o._sentence)::NUMERIC, 4) AS probability, o.*
 FROM offers o, _dict d
 WHERE d.name = 'mydict'
 ORDER BY probability DESC;

+-------------+----+------------+-------+-------+----------+-------------+-------+--------------+-----+
| probability | id | cluster_id | title | brand | category | description | price | identifiers | ... |
+-------------+----+------------+-------+-------+----------+-------------+-------+--------------+-----+
| | | | | | | | | | |
+-------------+----+------------+-------+-------+----------+-------------+-------+--------------+-----+
The first 20 out of 1725 rows are shown.
Some returned records were too large to display. This query returned 1725 rows.

Average planning time over 5 iterations: 0.097 ms.
Average execution time over 5 iterations: 102.78 ms.

+--+
| QUERY PLAN |
+--+
| Sort (cost=291.19..295.50 rows=1725 width=543) (actual time=104.401..104.465 rows=1725 loops=1) |
| Sort Key: (round((prob(d.dict, o._sentence))::numeric, 4)) DESC |
| Sort Method: quicksort Memory: 1007kB |
| -> Nested Loop (cost=0.00..198.45 rows=1725 width=543) (actual time=0.081..103.465 rows=1725 loops=1) |
| -> Seq Scan on _dict d (cost=0.00..33.01 rows=1 width=18) (actual time=0.021..0.023 rows=1 loops=1) |
| Filter: ((name)::text = 'mydict'::text) |
| -> Seq Scan on offers o (cost=0.00..135.25 rows=1725 width=511) (actual time=0.001..0.175 rows=1725 |
| loops=1) |
+--+

============== probabilistic_2 ============== #

 SELECT category, SUM(prob(d.dict, o._sentence)) AS expected_count
 FROM offers o, _dict d
 WHERE d.name = 'mydict'
 GROUP BY category
 ORDER BY expected_count DESC;

+----------------------------+--------------------+
| category | expected_count |
+----------------------------+--------------------+
Tools_and_Home_Improvement	151.76652960050382
Home_and_Garden	132.46422637057302
Clothing	105.81948233534979
Automotive	99.07152758271758
Office_Products	97.99577598105066
Other_Electronics	72.35240584584147
Books	50.013460503500035
Sports_and_Outdoors	48.177061794882086
Computers_and_Accessories	46.844157965517795
Jewelry	45.249903459438904
Shoes	44.811806149479914
Health_and_Beauty	42.40316057105195
Grocery_and_Gourmet_Food	37.08972946966475
Musical_Instruments	31.464575133557027
Luggage_and_Travel_Gear	29.667148937025335
Camera_and_Photo	29.112691031904887
Toys_and_Games	28.575616637317314
CDs_and_Vinyl	23.75262078226958
not found	23.023654480188345
+----------------------------+--------------------+
The first 20 out of 25 rows are shown.

Average planning time over 5 iterations: 0.079 ms.
Average execution time over 5 iterations: 101.2 ms.

+--+
| QUERY PLAN |
+--+
| Sort (cost=199.28..199.34 rows=25 width=24) (actual time=103.790..103.792 rows=25 loops=1) |
| Sort Key: (sum(prob(d.dict, o._sentence))) DESC |
| Sort Method: quicksort Memory: 26kB |
| -> HashAggregate (cost=198.45..198.70 rows=25 width=24) (actual time=103.776..103.780 rows=25 loops=1) |
| Group Key: o.category |
| Batches: 1 Memory Usage: 24kB |
| -> Nested Loop (cost=0.00..185.51 rows=1725 width=128) (actual time=0.017..0.952 rows=1725 loops=1) |
| -> Seq Scan on _dict d (cost=0.00..33.01 rows=1 width=18) (actual time=0.015..0.016 rows=1 |
| loops=1) |
| Filter: ((name)::text = 'mydict'::text) |
| -> Seq Scan on offers o (cost=0.00..135.25 rows=1725 width=110) (actual time=0.001..0.180 |
| rows=1725 loops=1) |
+--+

============== probabilistic_3 ============== #

 SELECT cluster_id, ROUND(SUM(id * prob(d.dict, o._sentence))::NUMERIC, 2) AS expected_sum, COUNT(id) AS
number_of_offers
 FROM offers o, _dict d
 WHERE d.name = 'mydict'
 GROUP BY cluster_id
 ORDER BY number_of_offers DESC;

+------------+--------------+------------------+
| cluster_id | expected_sum | number_of_offers |
+------------+--------------+------------------+
982	10738252.63	5
192	36393937.33	5
1032	4897011.00	5
1228	9658046.19	5
150	29429384.50	5
89	32855493.50	5
1227	10775660.63	5
102	31057848.43	5
948	8731025.46	5
1162	12397788.80	5
996	9219473.40	5
1215	6089245.46	5
993	6451651.83	5
77	48614400.50	5
968	6144958.00	5
1046	3255967.20	5
64	41167332.50	5
1103	11885774.13	5
131	27397223.00	5
+------------+--------------+------------------+
The first 20 out of 1111 rows are shown.

Average planning time over 5 iterations: 0.09 ms.
Average execution time over 5 iterations: 103.02 ms.

+--+
| QUERY PLAN |
+--+
| Sort (cost=284.26..287.03 rows=1111 width=48) (actual time=103.266..103.300 rows=1111 loops=1) |
| Sort Key: (count(o.id)) DESC |
| Sort Method: quicksort Memory: 120kB |
| -> HashAggregate (cost=211.39..228.05 rows=1111 width=48) (actual time=102.531..103.146 rows=1111 loops=1) |
| Group Key: o.cluster_id |
| Batches: 1 Memory Usage: 193kB |
| -> Nested Loop (cost=0.00..185.51 rows=1725 width=128) (actual time=0.029..1.107 rows=1725 loops=1) |
| -> Seq Scan on _dict d (cost=0.00..33.01 rows=1 width=18) (actual time=0.025..0.026 rows=1 |
| loops=1) |
| Filter: ((name)::text = 'mydict'::text) |
| -> Seq Scan on offers o (cost=0.00..135.25 rows=1725 width=110) (actual time=0.002..0.176 |
| rows=1725 loops=1) |
+--+

============== probabilistic_4 ============== #

 WITH category_sentence AS (
 SELECT timeout, category, AGG_OR(_sentence) AS sentence
 FROM offers
 GROUP BY category
)
 SELECT cs.*, round(prob(d.dict, cs.sentence)::NUMERIC, 4) AS probability
 FROM category_sentence cs, _dict d
 WHERE d.name = 'mydict'
 ORDER BY probability ASC;

The following error occurred while executing this query:
column "timeout" does not exist
LINE 3: SELECT timeout, category, AGG_OR(_sentence) AS sente...
 ^

============== probabilistic_5 ============== #

 SELECT o.id, o.cluster_id, o.brand, o.category, o.identifiers, round(prob(d.dict, _sentence)::NUMERIC, 4) AS
probability
 FROM offers o, _dict d
 WHERE cluster_id IN (
 SELECT cluster_id
 FROM offers
 WHERE title LIKE '%card%'
 OR description LIKE '%card%'
)
 ORDER BY probability DESC
 LIMIT 1;

+----------+------------+-------+----------------------------+------------------------------+-------------+
| id | cluster_id | brand | category | identifiers | probability |
+----------+------------+-------+----------------------------+------------------------------+-------------+
| 16951969 | 97 | None | Tools_and_Home_Improvement | [{'/sku': '[23003393usen]'}] | 1.0000 |
+----------+------------+-------+----------------------------+------------------------------+-------------+

Average planning time over 5 iterations: 0.47 ms.
Average execution time over 5 iterations: 46.812 ms.

+--+
| QUERY PLAN |
+--+
| Limit (cost=325.77..325.77 rows=1 width=105) (actual time=46.124..46.126 rows=1 loops=1) |
| -> Sort (cost=325.77..326.28 rows=205 width=105) (actual time=46.123..46.125 rows=1 loops=1) |
| Sort Key: (round((prob(d.dict, o._sentence))::numeric, 4)) DESC |
| Sort Method: top-N heapsort Memory: 25kB |
| -> Nested Loop (cost=145.06..324.74 rows=205 width=105) (actual time=4.937..46.088 rows=129 loops=1) |
| -> Seq Scan on _dict d (cost=0.00..33.01 rows=1 width=18) (actual time=0.029..0.029 rows=1 |
| loops=1) |
| -> Hash Semi Join (cost=145.06..288.15 rows=205 width=167) (actual time=1.345..1.709 rows=129 |
| loops=1) |
| Hash Cond: (o.cluster_id = offers.cluster_id) |
| -> Seq Scan on offers o (cost=0.00..135.25 rows=1725 width=167) (actual time=0.002..0.111 |
| rows=1725 loops=1) |
| -> Hash (cost=143.88..143.88 rows=95 width=8) (actual time=1.334..1.334 rows=76 loops=1) |
| Buckets: 1024 Batches: 1 Memory Usage: 11kB |
| -> Seq Scan on offers (cost=0.00..143.88 rows=95 width=8) (actual time=0.052..1.324 |
| rows=76 loops=1) |
| Filter: ((title ~~ '%card%'::text) OR (description ~~ '%card%'::text)) |
| Rows Removed by Filter: 1649 |
+--+

============== probabilistic_6 ============== #

 SELECT o.*
 FROM offers o, _dict d
 WHERE title LIKE '%card%'
 OR description LIKE '%card%'
 AND prob(d.dict, _sentence) > 0.45
 AND prob(d.dict, _sentence) < 0.55;

+----+------------+-------+-------+----------+-------------+-------+--------------+-----+
| id | cluster_id | title | brand | category | description | price | identifiers | ... |
+----+------------+-------+-------+----------+-------------+-------+--------------+-----+
| | | | | | | | | |
+----+------------+-------+-------+----------+-------------+-------+--------------+-----+
The first 20 out of 43 rows are shown.
Some returned records were too large to display. This query returned 43 rows.

Average planning time over 5 iterations: 0.579 ms.
Average execution time over 5 iterations: 11.178 ms.

+--+
| QUERY PLAN |
+--+
| Nested Loop (cost=0.00..179.26 rows=29 width=511) (actual time=0.029..10.838 rows=43 loops=1) |
| Join Filter: ((o.title ~~ '%card%'::text) OR ((o.description ~~ '%card%'::text) AND (prob(d.dict, o._sentence) |
| > '0.45'::double precision) AND (prob(d.dict, o._sentence) < '0.55'::double precision))) |
| Rows Removed by Join Filter: 33 |
| -> Seq Scan on _dict d (cost=0.00..33.01 rows=1 width=18) (actual time=0.007..0.008 rows=1 loops=1) |
| -> Seq Scan on offers o (cost=0.00..143.88 rows=95 width=511) (actual time=0.021..0.964 rows=76 loops=1) |
| Filter: ((title ~~ '%card%'::text) OR (description ~~ '%card%'::text)) |
| Rows Removed by Filter: 1649 |
+--+

 # === #
 # ============== QuestionMark ============== #
 # === #
 # The query results file.
 # Run on DuBio.

This file contains the query results and runtimes of this benchmark test.
The query plan and average run time are produced by PostgreSQL EXPLAIN ANALYSE.
Please see 'QM_metrics_results' for the results of the metrics.

============== IUD_1_rollback ============== #

 INSERT INTO offers (id, cluster_id, title, brand, category, description, price, identifiers, keyvaluepairs,
spectablecontent, "_sentence")
 VALUES(-464, 77, ..., Bdd('b77x1=1&v77=1')),
 (-466, 77, ..., Bdd('b78x1=0&v78=1')),
 (-468, 77, ..., Bdd('b77x1=2&v77=1')),
 (-469, 77, ..., Bdd('b78x1=1&v78=1')),
 (-471, 77, ..., Bdd('b77x1=0&v77=1'));

 UPDATE _dict
 SET dict = add(dict, 'b77x1=0:0.24454, b77x1=1:0.42911, b77x1=2:0.32635, b78x1=0:0.5, b78x1=1:0.5, v77=1:0.629,
 v77=2:0.125, v77=3:0.246')
 WHERE name='mydict';

Average planning time over 5 iterations: 0.023 ms.
Average execution time over 5 iterations: 0.295 ms.

+---+
| QUERY PLAN |
+---+
| Insert on offers (cost=0.00..0.06 rows=0 width=0) (actual time=0.311..0.311 rows=0 loops=1) |
| -> Values Scan on "*VALUES*" (cost=0.00..0.06 rows=5 width=304) (actual time=0.001..0.014 rows=5 loops=1) |
+---+

Average planning time over 5 iterations: 0.067 ms.
Average execution time over 5 iterations: 2.298 ms.

+---+
| QUERY PLAN |
+---+
| Update on _dict (cost=0.00..33.02 rows=0 width=0) (actual time=2.178..2.179 rows=0 loops=1) |
| -> Seq Scan on _dict (cost=0.00..33.02 rows=1 width=38) (actual time=1.029..1.030 rows=1 loops=1) |
| Filter: ((name)::text = 'mydict'::text) |
+---+

============== IUD_2_rollback ============== #

 INSERT INTO offers(id, cluster_id, title, brand, category, description, price, identifiers, keyvaluepairs,
 spectablecontent, _sentence)
 SELECT * FROM bulk_insert;

 UPDATE _dict
 SET dict = add(dict, 'b000x1=0:0.500000, b000x1=1:0.500000, ..., v966=1:0.632582, v966=2:0.203147')
 WHERE name='mydict';

Average planning time over 5 iterations: 0.046 ms.
Average execution time over 5 iterations: 4.034 ms.

+--+
| QUERY PLAN |
+--+
| Insert on offers (cost=0.00..76.00 rows=0 width=0) (actual time=3.372..3.373 rows=0 loops=1) |
| -> Seq Scan on bulk_insert (cost=0.00..76.00 rows=1000 width=475) (actual time=0.005..0.188 rows=1000 loops=1)|
+--+

Average planning time over 5 iterations: 0.069 ms.
Average execution time over 5 iterations: 4.908 ms.

+---+
| QUERY PLAN |
+---+
| Update on _dict (cost=0.00..33.02 rows=0 width=0) (actual time=4.875..4.876 rows=0 loops=1) |
| -> Seq Scan on _dict (cost=0.00..33.02 rows=1 width=38) (actual time=3.237..3.237 rows=1 loops=1) |
| Filter: ((name)::text = 'mydict'::text) |
+---+

============== IUD_3_rollback ============== #

 UPDATE _dict
 SET dict = upd(dict, 'a7x1=0:0.3992, a7x1=1:0.6008, ..., w8=2:0.329, w8=3:0.184')
 WHERE name='mydict';

Average planning time over 5 iterations: 0.041 ms.
Average execution time over 5 iterations: 1.128 ms.

+---+
| QUERY PLAN |
+---+
| Update on _dict (cost=0.00..33.02 rows=0 width=0) (actual time=1.018..1.019 rows=0 loops=1) |
| -> Seq Scan on _dict (cost=0.00..33.02 rows=1 width=38) (actual time=0.090..0.091 rows=1 loops=1) |
| Filter: ((name)::text = 'mydict'::text) |
+---+

============== IUD_4_rollback ============== #

 WITH max_cluster AS (
 SELECT (max(cluster_id) + 1) AS max_id
 FROM offers
)
 UPDATE offers
 SET cluster_id = max_cluster.max_id,
 _sentence = Bdd('1')
 FROM max_cluster
 WHERE id = 2689021;

 WITH max_cluster AS (
 SELECT max(cluster_id) + 1 AS max_id
 FROM offers
)
 UPDATE offers
 SET cluster_id = max_cluster.max_id,
 _sentence = Bdd('1')
 FROM max_cluster
 WHERE id = 7257664;

 UPDATE offers
 SET _sentence = Bdd('a162x5=0&w162=0')
 WHERE id = 10198975;

 UPDATE offers
 SET _sentence = Bdd('a162x5=1&w162=0')
 WHERE id = 2668263;

 UPDATE _dict
 SET dict = add(dict, 'w162=0:0.83')
 WHERE name='mydict';

 UPDATE _dict
 SET dict = del(dict, 'a162x5=2')
 WHERE name='mydict';

Average planning time over 5 iterations: 0.076 ms.
Average execution time over 5 iterations: 0.998 ms.

+--+
| QUERY PLAN |
+--+
| Update on offers (cost=670.61..1341.26 rows=0 width=0) (actual time=1.101..1.102 rows=0 loops=1) |
| -> Nested Loop (cost=670.61..1341.26 rows=1 width=78) (actual time=0.758..0.976 rows=1 loops=1) |
| -> Seq Scan on offers (cost=0.00..670.61 rows=1 width=6) (actual time=0.047..0.263 rows=1 loops=1) |
| Filter: (id = 2689021) |
| Rows Removed by Filter: 1724 |
| -> Subquery Scan on max_cluster (cost=670.61..670.63 rows=1 width=40) (actual time=0.710..0.710 rows=1 |
| loops=1) |
| -> Aggregate (cost=670.61..670.62 rows=1 width=8) (actual time=0.707..0.707 rows=1 loops=1) |
| -> Seq Scan on offers offers_1 (cost=0.00..649.89 rows=8289 width=8) (actual |
| time=0.001..0.533 rows=1725 loops=1) |
+--+

Average planning time over 5 iterations: 0.062 ms.
Average execution time over 5 iterations: 0.84 ms.

+--+
| QUERY PLAN |
+--+
| Update on offers (cost=671.79..1343.61 rows=0 width=0) (actual time=1.153..1.154 rows=0 loops=1) |
| -> Nested Loop (cost=671.79..1343.61 rows=1 width=78) (actual time=0.857..1.138 rows=1 loops=1) |
| -> Seq Scan on offers (cost=0.00..671.79 rows=1 width=6) (actual time=0.050..0.330 rows=1 loops=1) |
| Filter: (id = 7257664) |
| Rows Removed by Filter: 1724 |
| -> Subquery Scan on max_cluster (cost=671.79..671.81 rows=1 width=40) (actual time=0.805..0.806 rows=1 |
| loops=1) |
| -> Aggregate (cost=671.79..671.80 rows=1 width=8) (actual time=0.802..0.802 rows=1 loops=1) |
| -> Seq Scan on offers offers_1 (cost=0.00..651.03 rows=8303 width=8) (actual |
| time=0.001..0.602 rows=1725 loops=1) |
+--+

Average planning time over 5 iterations: 0.031 ms.
Average execution time over 5 iterations: 0.727 ms.

+---+
| QUERY PLAN |
+---+
| Update on offers (cost=0.00..672.98 rows=0 width=0) (actual time=1.293..1.294 rows=0 loops=1) |
| -> Seq Scan on offers (cost=0.00..672.98 rows=1 width=38) (actual time=0.067..1.131 rows=1 loops=1) |
| Filter: (id = 10198975) |
| Rows Removed by Filter: 1724 |
+---+

Average planning time over 5 iterations: 0.056 ms.
Average execution time over 5 iterations: 1.138 ms.

+---+
| QUERY PLAN |
+---+
| Update on offers (cost=0.00..672.98 rows=0 width=0) (actual time=0.985..0.985 rows=0 loops=1) |
| -> Seq Scan on offers (cost=0.00..672.98 rows=1 width=38) (actual time=0.064..0.970 rows=1 loops=1) |
| Filter: (id = 2668263) |
| Rows Removed by Filter: 1724 |
+---+

Average planning time over 5 iterations: 0.055 ms.
Average execution time over 5 iterations: 1.313 ms.

+---+
| QUERY PLAN |
+---+
| Update on _dict (cost=0.00..33.02 rows=0 width=0) (actual time=1.132..1.132 rows=0 loops=1) |
| -> Seq Scan on _dict (cost=0.00..33.02 rows=1 width=38) (actual time=0.111..0.112 rows=1 loops=1) |
| Filter: ((name)::text = 'mydict'::text) |
+---+

Average planning time over 5 iterations: 0.043 ms.
Average execution time over 5 iterations: 1.104 ms.

+---+
| QUERY PLAN |
+---+
| Update on _dict (cost=0.00..33.02 rows=0 width=0) (actual time=1.070..1.070 rows=0 loops=1) |
| -> Seq Scan on _dict (cost=0.00..33.02 rows=1 width=38) (actual time=0.081..0.082 rows=1 loops=1) |
| Filter: ((name)::text = 'mydict'::text) |
+---+

============== IUD_5_rollback ============== #

 DELETE FROM offers
 WHERE cluster_id = 41;

 UPDATE _dict
 SET dict = del(dict, 'a41x1=0, a41x1=1, ..., w44=4, w44=5')
 WHERE name='mydict';

Average planning time over 5 iterations: 0.019 ms.
Average execution time over 5 iterations: 0.428 ms.

+---+
| QUERY PLAN |
+---+
| Delete on offers (cost=0.00..672.98 rows=0 width=0) (actual time=0.273..0.273 rows=0 loops=1) |
| -> Seq Scan on offers (cost=0.00..672.98 rows=24 width=6) (actual time=0.007..0.268 rows=5 loops=1) |
| Filter: (cluster_id = 41) |
| Rows Removed by Filter: 1720 |
+---+

Average planning time over 5 iterations: 0.037 ms.
Average execution time over 5 iterations: 1.194 ms.

+---+
| QUERY PLAN |
+---+
| Update on _dict (cost=0.00..33.02 rows=0 width=0) (actual time=1.037..1.037 rows=0 loops=1) |
| -> Seq Scan on _dict (cost=0.00..33.02 rows=1 width=38) (actual time=0.092..0.093 rows=1 loops=1) |
| Filter: ((name)::text = 'mydict'::text) |
+---+

	Preface
	Abstract
	Introduction
	Background
	Probabilistic Databases
	Benchmarking
	Product Matching
	Technologies
	PostgreSQL
	MayBMS
	DuBio

	Theoretical Framework
	Benchmark Foundations
	Database Benchmarking
	Fairness

	Methodology
	Designing the Benchmark
	Dataset Selection
	Product Matching
	Query Selection
	Metric Selection
	Executing the Benchmark
	User Testing

	Benchmark
	The QuestionMark Benchmark
	Dataset
	Parameter Tuning
	Queries
	Altering Queries
	Query Implementation Decisions

	Metrics
	Design Decisions

	Empirical Evaluation
	Case Study: Benchmarking MayBMS and DuBio
	Case Description
	Benchmark Execution
	Results MayBMS
	Results DuBio
	Conclusion

	User Testing

	Conclusion
	Discussion
	Limitations
	Future work
	Conclusion

	References
	The QuestionMark Benchmark for Probabilistic Databases
	QuestionMark: The Dataset Generator
	The Dataset Generator Roadmap
	WDC Product Data Corpus and Gold Standard
	Dataset Generator Parameters
	Blocking Algoritm
	Matching Algoritm

	QuestionMark: The Probabilistic Benchmark
	The Probabilistic Benchmark Roadmap
	Benchmark Parameters

	Benchmark Queries
	Queries
	Altering Queries

	Produced Results
	Metrics

	Digesting the Results
	Effectiveness
	Efficiency
	Appeal
	Drawing Conclusions

	Including Other Database Management Systems
	Including any new Probabilistic DBMS
	Including a new Non-PostgreSQL Based DBMS

	Query Implementations
	Queries in Pseudocode
	Queries in DuBio
	Queries in MayBMS

	WDC Product Offers Dataset
	Elaboration on the Dataset
	JSON Structure of a Product Offer

	Performance
	Blocking Algorithm Performance
	Matching Algorithm Performance

	User Study
	Informed Consent Form
	Formal Experiment
	Interview Questions
	Extensive Results

	Additional Details Case Study
	Docker images
	Raw Results

